Metamath Proof Explorer


Theorem pmtrcnel2

Description: Variation on pmtrcnel . (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s S = SymGrp D
pmtrcnel.t T = pmTrsp D
pmtrcnel.b B = Base S
pmtrcnel.j J = F I
pmtrcnel.d φ D V
pmtrcnel.f φ F B
pmtrcnel.i φ I dom F I
Assertion pmtrcnel2 φ dom F I I J dom T I J F I

Proof

Step Hyp Ref Expression
1 pmtrcnel.s S = SymGrp D
2 pmtrcnel.t T = pmTrsp D
3 pmtrcnel.b B = Base S
4 pmtrcnel.j J = F I
5 pmtrcnel.d φ D V
6 pmtrcnel.f φ F B
7 pmtrcnel.i φ I dom F I
8 mvdco dom T I J -1 T I J F I dom T I J -1 I dom T I J F I
9 8 a1i φ dom T I J -1 T I J F I dom T I J -1 I dom T I J F I
10 coass T I J -1 T I J F = T I J -1 T I J F
11 difss F I F
12 dmss F I F dom F I dom F
13 11 12 ax-mp dom F I dom F
14 13 7 sseldi φ I dom F
15 1 3 symgbasf1o F B F : D 1-1 onto D
16 f1of F : D 1-1 onto D F : D D
17 6 15 16 3syl φ F : D D
18 17 fdmd φ dom F = D
19 14 18 eleqtrd φ I D
20 17 19 ffvelrnd φ F I D
21 4 20 eqeltrid φ J D
22 19 21 prssd φ I J D
23 17 ffnd φ F Fn D
24 fnelnfp F Fn D I D I dom F I F I I
25 24 biimpa F Fn D I D I dom F I F I I
26 23 19 7 25 syl21anc φ F I I
27 26 necomd φ I F I
28 4 a1i φ J = F I
29 27 28 neeqtrrd φ I J
30 pr2nelem I D J D I J I J 2 𝑜
31 19 21 29 30 syl3anc φ I J 2 𝑜
32 eqid ran T = ran T
33 2 32 pmtrrn D V I J D I J 2 𝑜 T I J ran T
34 5 22 31 33 syl3anc φ T I J ran T
35 2 32 pmtrff1o T I J ran T T I J : D 1-1 onto D
36 f1ococnv1 T I J : D 1-1 onto D T I J -1 T I J = I D
37 34 35 36 3syl φ T I J -1 T I J = I D
38 37 coeq1d φ T I J -1 T I J F = I D F
39 10 38 eqtr3id φ T I J -1 T I J F = I D F
40 fcoi2 F : D D I D F = F
41 17 40 syl φ I D F = F
42 39 41 eqtrd φ T I J -1 T I J F = F
43 42 difeq1d φ T I J -1 T I J F I = F I
44 43 dmeqd φ dom T I J -1 T I J F I = dom F I
45 2 32 pmtrfcnv T I J ran T T I J -1 = T I J
46 34 45 syl φ T I J -1 = T I J
47 46 difeq1d φ T I J -1 I = T I J I
48 47 dmeqd φ dom T I J -1 I = dom T I J I
49 2 pmtrmvd D V I J D I J 2 𝑜 dom T I J I = I J
50 5 22 31 49 syl3anc φ dom T I J I = I J
51 48 50 eqtrd φ dom T I J -1 I = I J
52 51 uneq1d φ dom T I J -1 I dom T I J F I = I J dom T I J F I
53 uncom I J dom T I J F I = dom T I J F I I J
54 52 53 eqtrdi φ dom T I J -1 I dom T I J F I = dom T I J F I I J
55 9 44 54 3sstr3d φ dom F I dom T I J F I I J
56 55 ssdifd φ dom F I I J dom T I J F I I J I J
57 difun2 dom T I J F I I J I J = dom T I J F I I J
58 difss dom T I J F I I J dom T I J F I
59 57 58 eqsstri dom T I J F I I J I J dom T I J F I
60 56 59 sstrdi φ dom F I I J dom T I J F I