| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pockthg.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
pockthg.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
pockthg.3 |
⊢ ( 𝜑 → 𝐵 < 𝐴 ) |
| 4 |
|
pockthg.4 |
⊢ ( 𝜑 → 𝑁 = ( ( 𝐴 · 𝐵 ) + 1 ) ) |
| 5 |
|
pockthlem.5 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 6 |
|
pockthlem.6 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 7 |
|
pockthlem.7 |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
| 8 |
|
pockthlem.8 |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) |
| 9 |
|
pockthlem.9 |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 10 |
|
pockthlem.10 |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) |
| 11 |
|
pockthlem.11 |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) = 1 ) |
| 12 |
|
prmnn |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℕ ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
| 14 |
8
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℕ0 ) |
| 15 |
13 14
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℕ ) |
| 16 |
15
|
nnzd |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℤ ) |
| 17 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 19 |
18
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 20 |
|
gcddvds |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) ) |
| 21 |
9 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ) |
| 23 |
9 19
|
gcdcld |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℕ0 ) |
| 24 |
23
|
nn0zd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℤ ) |
| 25 |
1 2
|
nnmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| 26 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 27 |
25 26
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 28 |
|
eluzp1p1 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝐴 · 𝐵 ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 30 |
4 29
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 31 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 32 |
31
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 33 |
30 32
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 34 |
|
eluz2b2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 35 |
33 34
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 36 |
35
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 37 |
36
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 38 |
21
|
simprd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) |
| 39 |
24 19 37 38 6
|
dvdstrd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) |
| 40 |
36
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 41 |
|
simpr |
⊢ ( ( 𝐶 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 42 |
41
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) |
| 43 |
40 42
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) |
| 44 |
|
dvdslegcd |
⊢ ( ( ( ( 𝐶 gcd 𝑃 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) ) |
| 45 |
24 9 37 43 44
|
syl31anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) ) |
| 46 |
22 39 45
|
mp2and |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) |
| 47 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
| 48 |
|
1z |
⊢ 1 ∈ ℤ |
| 49 |
|
eluzp1m1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 50 |
48 30 49
|
sylancr |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 51 |
50 26
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ ) |
| 52 |
51
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 53 |
|
zexpcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 54 |
9 52 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 55 |
|
modgcd |
⊢ ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) ) |
| 56 |
54 36 55
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) ) |
| 57 |
|
gcdcom |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 gcd 𝑁 ) = ( 𝑁 gcd 1 ) ) |
| 58 |
48 37 57
|
sylancr |
⊢ ( 𝜑 → ( 1 gcd 𝑁 ) = ( 𝑁 gcd 1 ) ) |
| 59 |
|
gcd1 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 1 ) = 1 ) |
| 60 |
37 59
|
syl |
⊢ ( 𝜑 → ( 𝑁 gcd 1 ) = 1 ) |
| 61 |
58 60
|
eqtrd |
⊢ ( 𝜑 → ( 1 gcd 𝑁 ) = 1 ) |
| 62 |
47 56 61
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ) |
| 63 |
|
rpexp |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ↔ ( 𝐶 gcd 𝑁 ) = 1 ) ) |
| 64 |
9 37 51 63
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ↔ ( 𝐶 gcd 𝑁 ) = 1 ) ) |
| 65 |
62 64
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑁 ) = 1 ) |
| 66 |
46 65
|
breqtrd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ≤ 1 ) |
| 67 |
18
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 68 |
|
simpr |
⊢ ( ( 𝐶 = 0 ∧ 𝑃 = 0 ) → 𝑃 = 0 ) |
| 69 |
68
|
necon3ai |
⊢ ( 𝑃 ≠ 0 → ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) |
| 70 |
67 69
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) |
| 71 |
|
gcdn0cl |
⊢ ( ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) → ( 𝐶 gcd 𝑃 ) ∈ ℕ ) |
| 72 |
9 19 70 71
|
syl21anc |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℕ ) |
| 73 |
|
nnle1eq1 |
⊢ ( ( 𝐶 gcd 𝑃 ) ∈ ℕ → ( ( 𝐶 gcd 𝑃 ) ≤ 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝑃 ) ≤ 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 75 |
66 74
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) = 1 ) |
| 76 |
|
odzcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℕ ) |
| 77 |
18 9 75 76
|
syl3anc |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℕ ) |
| 78 |
77
|
nnzd |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℤ ) |
| 79 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 80 |
5 79
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 81 |
80 32
|
eleqtrdi |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 82 |
|
eluzp1m1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 83 |
48 81 82
|
sylancr |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 84 |
83 26
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ ) |
| 85 |
84
|
nnzd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℤ ) |
| 86 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 87 |
51
|
nnzd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 88 |
|
pcdvds |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 89 |
7 1 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 90 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 91 |
|
dvdsmul1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
| 92 |
86 90 91
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
| 93 |
4
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) = ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) ) |
| 94 |
25
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 95 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 96 |
|
pncan |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) = ( 𝐴 · 𝐵 ) ) |
| 97 |
94 95 96
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) = ( 𝐴 · 𝐵 ) ) |
| 98 |
93 97
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) = ( 𝐴 · 𝐵 ) ) |
| 99 |
92 98
|
breqtrrd |
⊢ ( 𝜑 → 𝐴 ∥ ( 𝑁 − 1 ) ) |
| 100 |
16 86 87 89 99
|
dvdstrd |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ) |
| 101 |
15
|
nnne0d |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ≠ 0 ) |
| 102 |
|
dvdsval2 |
⊢ ( ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℤ ∧ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ≠ 0 ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) ) |
| 103 |
16 101 87 102
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) ) |
| 104 |
100 103
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) |
| 105 |
|
peano2zm |
⊢ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ∈ ℤ ) |
| 106 |
54 105
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ∈ ℤ ) |
| 107 |
36
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 108 |
35
|
simprd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
| 109 |
|
1mod |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |
| 110 |
107 108 109
|
syl2anc |
⊢ ( 𝜑 → ( 1 mod 𝑁 ) = 1 ) |
| 111 |
10 110
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| 112 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 113 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) ) |
| 114 |
36 54 112 113
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) ) |
| 115 |
111 114
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) |
| 116 |
19 37 106 6 115
|
dvdstrd |
⊢ ( 𝜑 → 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) |
| 117 |
|
odzdvds |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) ) |
| 118 |
18 9 75 52 117
|
syl31anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) ) |
| 119 |
116 118
|
mpbid |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) |
| 120 |
51
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
| 121 |
15
|
nncnd |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℂ ) |
| 122 |
120 121 101
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) = ( 𝑁 − 1 ) ) |
| 123 |
119 122
|
breqtrrd |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ) |
| 124 |
|
nprmdvds1 |
⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 ) |
| 125 |
5 124
|
syl |
⊢ ( 𝜑 → ¬ 𝑃 ∥ 1 ) |
| 126 |
13
|
nnzd |
⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
| 127 |
|
iddvdsexp |
⊢ ( ( 𝑄 ∈ ℤ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) → 𝑄 ∥ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) |
| 128 |
126 8 127
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) |
| 129 |
126 16 87 128 100
|
dvdstrd |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑁 − 1 ) ) |
| 130 |
13
|
nnne0d |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
| 131 |
|
dvdsval2 |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑄 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) ) |
| 132 |
126 130 87 131
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) ) |
| 133 |
129 132
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) |
| 134 |
52
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 − 1 ) ) |
| 135 |
51
|
nnred |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 136 |
13
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 137 |
13
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑄 ) |
| 138 |
|
ge0div |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) → ( 0 ≤ ( 𝑁 − 1 ) ↔ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 139 |
135 136 137 138
|
syl3anc |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑁 − 1 ) ↔ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 140 |
134 139
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 141 |
|
elnn0z |
⊢ ( ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ↔ ( ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 142 |
133 140 141
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) |
| 143 |
|
zexpcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) → ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ ) |
| 144 |
9 142 143
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ ) |
| 145 |
|
peano2zm |
⊢ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ → ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ) |
| 146 |
144 145
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ) |
| 147 |
|
dvdsgcd |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) |
| 148 |
19 146 37 147
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) |
| 149 |
6 148
|
mpan2d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) |
| 150 |
|
odzdvds |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 151 |
18 9 75 142 150
|
syl31anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 152 |
13
|
nncnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 153 |
8
|
nnzd |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℤ ) |
| 154 |
152 130 153
|
expm1d |
⊢ ( 𝜑 → ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) = ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) |
| 155 |
154
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) = ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) ) |
| 156 |
135 15
|
nndivred |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℝ ) |
| 157 |
156
|
recnd |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℂ ) |
| 158 |
157 121 152 130
|
divassd |
⊢ ( 𝜑 → ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) / 𝑄 ) = ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) ) |
| 159 |
122
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) / 𝑄 ) = ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 160 |
155 158 159
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) = ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 161 |
160
|
breq2d |
⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 162 |
151 161
|
bitr4d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) ) |
| 163 |
11
|
breq2d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ↔ 𝑃 ∥ 1 ) ) |
| 164 |
149 162 163
|
3imtr3d |
⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) → 𝑃 ∥ 1 ) ) |
| 165 |
125 164
|
mtod |
⊢ ( 𝜑 → ¬ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) |
| 166 |
|
prmpwdvds |
⊢ ( ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ∧ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℤ ) ∧ ( 𝑄 ∈ ℙ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) ∧ ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∧ ¬ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) ) → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) |
| 167 |
104 78 7 8 123 165 166
|
syl222anc |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) |
| 168 |
|
odzphi |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ϕ ‘ 𝑃 ) ) |
| 169 |
18 9 75 168
|
syl3anc |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ϕ ‘ 𝑃 ) ) |
| 170 |
|
phiprm |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 171 |
5 170
|
syl |
⊢ ( 𝜑 → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 172 |
169 171
|
breqtrd |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑃 − 1 ) ) |
| 173 |
16 78 85 167 172
|
dvdstrd |
⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) |
| 174 |
|
pcdvdsb |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 − 1 ) ∈ ℤ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ↔ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) ) |
| 175 |
7 85 14 174
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ↔ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) ) |
| 176 |
173 175
|
mpbird |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ) |