Metamath Proof Explorer


Theorem pockthlem

Description: Lemma for pockthg . (Contributed by Mario Carneiro, 2-Mar-2014)

Ref Expression
Hypotheses pockthg.1 φA
pockthg.2 φB
pockthg.3 φB<A
pockthg.4 φN=AB+1
pockthlem.5 φP
pockthlem.6 φPN
pockthlem.7 φQ
pockthlem.8 φQpCntA
pockthlem.9 φC
pockthlem.10 φCN1modN=1
pockthlem.11 φCN1Q1gcdN=1
Assertion pockthlem φQpCntAQpCntP1

Proof

Step Hyp Ref Expression
1 pockthg.1 φA
2 pockthg.2 φB
3 pockthg.3 φB<A
4 pockthg.4 φN=AB+1
5 pockthlem.5 φP
6 pockthlem.6 φPN
7 pockthlem.7 φQ
8 pockthlem.8 φQpCntA
9 pockthlem.9 φC
10 pockthlem.10 φCN1modN=1
11 pockthlem.11 φCN1Q1gcdN=1
12 prmnn QQ
13 7 12 syl φQ
14 8 nnnn0d φQpCntA0
15 13 14 nnexpcld φQQpCntA
16 15 nnzd φQQpCntA
17 prmnn PP
18 5 17 syl φP
19 18 nnzd φP
20 gcddvds CPCgcdPCCgcdPP
21 9 19 20 syl2anc φCgcdPCCgcdPP
22 21 simpld φCgcdPC
23 9 19 gcdcld φCgcdP0
24 23 nn0zd φCgcdP
25 1 2 nnmulcld φAB
26 nnuz =1
27 25 26 eleqtrdi φAB1
28 eluzp1p1 AB1AB+11+1
29 27 28 syl φAB+11+1
30 4 29 eqeltrd φN1+1
31 df-2 2=1+1
32 31 fveq2i 2=1+1
33 30 32 eleqtrrdi φN2
34 eluz2b2 N2N1<N
35 33 34 sylib φN1<N
36 35 simpld φN
37 36 nnzd φN
38 21 simprd φCgcdPP
39 24 19 37 38 6 dvdstrd φCgcdPN
40 36 nnne0d φN0
41 simpr C=0N=0N=0
42 41 necon3ai N0¬C=0N=0
43 40 42 syl φ¬C=0N=0
44 dvdslegcd CgcdPCN¬C=0N=0CgcdPCCgcdPNCgcdPCgcdN
45 24 9 37 43 44 syl31anc φCgcdPCCgcdPNCgcdPCgcdN
46 22 39 45 mp2and φCgcdPCgcdN
47 10 oveq1d φCN1modNgcdN=1gcdN
48 1z 1
49 eluzp1m1 1N1+1N11
50 48 30 49 sylancr φN11
51 50 26 eleqtrrdi φN1
52 51 nnnn0d φN10
53 zexpcl CN10CN1
54 9 52 53 syl2anc φCN1
55 modgcd CN1NCN1modNgcdN=CN1gcdN
56 54 36 55 syl2anc φCN1modNgcdN=CN1gcdN
57 gcdcom 1N1gcdN=Ngcd1
58 48 37 57 sylancr φ1gcdN=Ngcd1
59 gcd1 NNgcd1=1
60 37 59 syl φNgcd1=1
61 58 60 eqtrd φ1gcdN=1
62 47 56 61 3eqtr3d φCN1gcdN=1
63 rpexp CNN1CN1gcdN=1CgcdN=1
64 9 37 51 63 syl3anc φCN1gcdN=1CgcdN=1
65 62 64 mpbid φCgcdN=1
66 46 65 breqtrd φCgcdP1
67 18 nnne0d φP0
68 simpr C=0P=0P=0
69 68 necon3ai P0¬C=0P=0
70 67 69 syl φ¬C=0P=0
71 gcdn0cl CP¬C=0P=0CgcdP
72 9 19 70 71 syl21anc φCgcdP
73 nnle1eq1 CgcdPCgcdP1CgcdP=1
74 72 73 syl φCgcdP1CgcdP=1
75 66 74 mpbid φCgcdP=1
76 odzcl PCCgcdP=1odPC
77 18 9 75 76 syl3anc φodPC
78 77 nnzd φodPC
79 prmuz2 PP2
80 5 79 syl φP2
81 80 32 eleqtrdi φP1+1
82 eluzp1m1 1P1+1P11
83 48 81 82 sylancr φP11
84 83 26 eleqtrrdi φP1
85 84 nnzd φP1
86 1 nnzd φA
87 51 nnzd φN1
88 pcdvds QAQQpCntAA
89 7 1 88 syl2anc φQQpCntAA
90 2 nnzd φB
91 dvdsmul1 ABAAB
92 86 90 91 syl2anc φAAB
93 4 oveq1d φN1=AB+1-1
94 25 nncnd φAB
95 ax-1cn 1
96 pncan AB1AB+1-1=AB
97 94 95 96 sylancl φAB+1-1=AB
98 93 97 eqtrd φN1=AB
99 92 98 breqtrrd φAN1
100 16 86 87 89 99 dvdstrd φQQpCntAN1
101 15 nnne0d φQQpCntA0
102 dvdsval2 QQpCntAQQpCntA0N1QQpCntAN1N1QQpCntA
103 16 101 87 102 syl3anc φQQpCntAN1N1QQpCntA
104 100 103 mpbid φN1QQpCntA
105 peano2zm CN1CN11
106 54 105 syl φCN11
107 36 nnred φN
108 35 simprd φ1<N
109 1mod N1<N1modN=1
110 107 108 109 syl2anc φ1modN=1
111 10 110 eqtr4d φCN1modN=1modN
112 1zzd φ1
113 moddvds NCN11CN1modN=1modNNCN11
114 36 54 112 113 syl3anc φCN1modN=1modNNCN11
115 111 114 mpbid φNCN11
116 19 37 106 6 115 dvdstrd φPCN11
117 odzdvds PCCgcdP=1N10PCN11odPCN1
118 18 9 75 52 117 syl31anc φPCN11odPCN1
119 116 118 mpbid φodPCN1
120 51 nncnd φN1
121 15 nncnd φQQpCntA
122 120 121 101 divcan1d φN1QQpCntAQQpCntA=N1
123 119 122 breqtrrd φodPCN1QQpCntAQQpCntA
124 nprmdvds1 P¬P1
125 5 124 syl φ¬P1
126 13 nnzd φQ
127 iddvdsexp QQpCntAQQQpCntA
128 126 8 127 syl2anc φQQQpCntA
129 126 16 87 128 100 dvdstrd φQN1
130 13 nnne0d φQ0
131 dvdsval2 QQ0N1QN1N1Q
132 126 130 87 131 syl3anc φQN1N1Q
133 129 132 mpbid φN1Q
134 52 nn0ge0d φ0N1
135 51 nnred φN1
136 13 nnred φQ
137 13 nngt0d φ0<Q
138 ge0div N1Q0<Q0N10N1Q
139 135 136 137 138 syl3anc φ0N10N1Q
140 134 139 mpbid φ0N1Q
141 elnn0z N1Q0N1Q0N1Q
142 133 140 141 sylanbrc φN1Q0
143 zexpcl CN1Q0CN1Q
144 9 142 143 syl2anc φCN1Q
145 peano2zm CN1QCN1Q1
146 144 145 syl φCN1Q1
147 dvdsgcd PCN1Q1NPCN1Q1PNPCN1Q1gcdN
148 19 146 37 147 syl3anc φPCN1Q1PNPCN1Q1gcdN
149 6 148 mpan2d φPCN1Q1PCN1Q1gcdN
150 odzdvds PCCgcdP=1N1Q0PCN1Q1odPCN1Q
151 18 9 75 142 150 syl31anc φPCN1Q1odPCN1Q
152 13 nncnd φQ
153 8 nnzd φQpCntA
154 152 130 153 expm1d φQQpCntA1=QQpCntAQ
155 154 oveq2d φN1QQpCntAQQpCntA1=N1QQpCntAQQpCntAQ
156 135 15 nndivred φN1QQpCntA
157 156 recnd φN1QQpCntA
158 157 121 152 130 divassd φN1QQpCntAQQpCntAQ=N1QQpCntAQQpCntAQ
159 122 oveq1d φN1QQpCntAQQpCntAQ=N1Q
160 155 158 159 3eqtr2d φN1QQpCntAQQpCntA1=N1Q
161 160 breq2d φodPCN1QQpCntAQQpCntA1odPCN1Q
162 151 161 bitr4d φPCN1Q1odPCN1QQpCntAQQpCntA1
163 11 breq2d φPCN1Q1gcdNP1
164 149 162 163 3imtr3d φodPCN1QQpCntAQQpCntA1P1
165 125 164 mtod φ¬odPCN1QQpCntAQQpCntA1
166 prmpwdvds N1QQpCntAodPCQQpCntAodPCN1QQpCntAQQpCntA¬odPCN1QQpCntAQQpCntA1QQpCntAodPC
167 104 78 7 8 123 165 166 syl222anc φQQpCntAodPC
168 odzphi PCCgcdP=1odPCϕP
169 18 9 75 168 syl3anc φodPCϕP
170 phiprm PϕP=P1
171 5 170 syl φϕP=P1
172 169 171 breqtrd φodPCP1
173 16 78 85 167 172 dvdstrd φQQpCntAP1
174 pcdvdsb QP1QpCntA0QpCntAQpCntP1QQpCntAP1
175 7 85 14 174 syl3anc φQpCntAQpCntP1QQpCntAP1
176 173 175 mpbird φQpCntAQpCntP1