Step |
Hyp |
Ref |
Expression |
1 |
|
quotcan.1 |
⊢ 𝐻 = ( 𝐹 ∘f · 𝐺 ) |
2 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
3 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
4 |
2 3
|
sselid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
5 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
6 |
2 5
|
sselid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
7 |
|
plymulcl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
8 |
1 7
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → 𝐻 ∈ ( Poly ‘ ℂ ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐻 ∈ ( Poly ‘ ℂ ) ) |
10 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 ≠ 0𝑝 ) |
11 |
|
quotcl2 |
⊢ ( ( 𝐻 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
12 |
9 4 10 11
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
13 |
|
plysubcl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐻 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
14 |
6 12 13
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
15 |
|
plymul0or |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) → ( ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) ) |
16 |
4 14 15
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) ) |
17 |
|
cnex |
⊢ ℂ ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ℂ ∈ V ) |
19 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
20 |
5 19
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 : ℂ ⟶ ℂ ) |
21 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
22 |
3 21
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐺 : ℂ ⟶ ℂ ) |
23 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
25 |
18 20 22 24
|
caofcom |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 ∘f · 𝐺 ) = ( 𝐺 ∘f · 𝐹 ) ) |
26 |
1 25
|
eqtrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐻 = ( 𝐺 ∘f · 𝐹 ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = ( ( 𝐺 ∘f · 𝐹 ) ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) |
28 |
|
plyf |
⊢ ( ( 𝐻 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) → ( 𝐻 quot 𝐺 ) : ℂ ⟶ ℂ ) |
29 |
12 28
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 quot 𝐺 ) : ℂ ⟶ ℂ ) |
30 |
|
subdi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 − 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) − ( 𝑥 · 𝑧 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 − 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) − ( 𝑥 · 𝑧 ) ) ) |
32 |
18 22 20 29 31
|
caofdi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) = ( ( 𝐺 ∘f · 𝐹 ) ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) |
33 |
27 32
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) |
34 |
33
|
eqeq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ↔ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ) ) |
35 |
10
|
neneqd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ¬ 𝐺 = 0𝑝 ) |
36 |
|
biorf |
⊢ ( ¬ 𝐺 = 0𝑝 → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ↔ ( 𝐺 = 0𝑝 ∨ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) ) |
38 |
16 34 37
|
3bitr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ↔ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) |
39 |
38
|
biimpd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) |
40 |
|
eqid |
⊢ ( deg ‘ 𝐺 ) = ( deg ‘ 𝐺 ) |
41 |
|
eqid |
⊢ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) |
42 |
40 41
|
dgrmul |
⊢ ( ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ≠ 0𝑝 ) ) → ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) |
43 |
42
|
expr |
⊢ ( ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) ∧ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ≠ 0𝑝 → ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
44 |
4 10 14 43
|
syl21anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ≠ 0𝑝 → ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
45 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
46 |
3 45
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
47 |
46
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ 𝐺 ) ∈ ℝ ) |
48 |
|
dgrcl |
⊢ ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ∈ ℕ0 ) |
49 |
14 48
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ∈ ℕ0 ) |
50 |
|
nn0addge1 |
⊢ ( ( ( deg ‘ 𝐺 ) ∈ ℝ ∧ ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ∈ ℕ0 ) → ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) |
51 |
47 49 50
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) |
52 |
|
breq2 |
⊢ ( ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) → ( ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ↔ ( deg ‘ 𝐺 ) ≤ ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
53 |
51 52
|
syl5ibrcom |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) = ( ( deg ‘ 𝐺 ) + ( deg ‘ ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) → ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
54 |
44 53
|
syld |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ≠ 0𝑝 → ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
55 |
33
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) = ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) |
56 |
55
|
breq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) ↔ ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ) ) |
57 |
|
plymulcl |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐻 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
58 |
4 12 57
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
59 |
|
plysubcl |
⊢ ( ( 𝐻 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
60 |
9 58 59
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
61 |
|
dgrcl |
⊢ ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) ∈ ℕ0 ) |
62 |
60 61
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) ∈ ℕ0 ) |
63 |
62
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) ∈ ℝ ) |
64 |
47 63
|
lenltd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) ↔ ¬ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) |
65 |
56 64
|
bitr3d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( deg ‘ 𝐺 ) ≤ ( deg ‘ ( 𝐺 ∘f · ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ) ) ↔ ¬ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) |
66 |
54 65
|
sylibd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) ≠ 0𝑝 → ¬ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) |
67 |
66
|
necon4ad |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) ) |
68 |
|
eqid |
⊢ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) |
69 |
68
|
quotdgr |
⊢ ( ( 𝐻 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) |
70 |
9 4 10 69
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐻 ∘f − ( 𝐺 ∘f · ( 𝐻 quot 𝐺 ) ) ) ) < ( deg ‘ 𝐺 ) ) ) |
71 |
39 67 70
|
mpjaod |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = 0𝑝 ) |
72 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
73 |
71 72
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = ( ℂ × { 0 } ) ) |
74 |
|
ofsubeq0 |
⊢ ( ( ℂ ∈ V ∧ 𝐹 : ℂ ⟶ ℂ ∧ ( 𝐻 quot 𝐺 ) : ℂ ⟶ ℂ ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = ( ℂ × { 0 } ) ↔ 𝐹 = ( 𝐻 quot 𝐺 ) ) ) |
75 |
18 20 29 74
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( ( 𝐹 ∘f − ( 𝐻 quot 𝐺 ) ) = ( ℂ × { 0 } ) ↔ 𝐹 = ( 𝐻 quot 𝐺 ) ) ) |
76 |
73 75
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → 𝐹 = ( 𝐻 quot 𝐺 ) ) |
77 |
76
|
eqcomd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐻 quot 𝐺 ) = 𝐹 ) |