| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quotcan.1 |
|
| 2 |
|
plyssc |
|
| 3 |
|
simp2 |
|
| 4 |
2 3
|
sselid |
|
| 5 |
|
simp1 |
|
| 6 |
2 5
|
sselid |
|
| 7 |
|
plymulcl |
|
| 8 |
1 7
|
eqeltrid |
|
| 9 |
8
|
3adant3 |
|
| 10 |
|
simp3 |
|
| 11 |
|
quotcl2 |
|
| 12 |
9 4 10 11
|
syl3anc |
|
| 13 |
|
plysubcl |
|
| 14 |
6 12 13
|
syl2anc |
|
| 15 |
|
plymul0or |
|
| 16 |
4 14 15
|
syl2anc |
|
| 17 |
|
cnex |
|
| 18 |
17
|
a1i |
|
| 19 |
|
plyf |
|
| 20 |
5 19
|
syl |
|
| 21 |
|
plyf |
|
| 22 |
3 21
|
syl |
|
| 23 |
|
mulcom |
|
| 24 |
23
|
adantl |
|
| 25 |
18 20 22 24
|
caofcom |
|
| 26 |
1 25
|
eqtrid |
|
| 27 |
26
|
oveq1d |
|
| 28 |
|
plyf |
|
| 29 |
12 28
|
syl |
|
| 30 |
|
subdi |
|
| 31 |
30
|
adantl |
|
| 32 |
18 22 20 29 31
|
caofdi |
|
| 33 |
27 32
|
eqtr4d |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
10
|
neneqd |
|
| 36 |
|
biorf |
|
| 37 |
35 36
|
syl |
|
| 38 |
16 34 37
|
3bitr4d |
|
| 39 |
38
|
biimpd |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
40 41
|
dgrmul |
|
| 43 |
42
|
expr |
|
| 44 |
4 10 14 43
|
syl21anc |
|
| 45 |
|
dgrcl |
|
| 46 |
3 45
|
syl |
|
| 47 |
46
|
nn0red |
|
| 48 |
|
dgrcl |
|
| 49 |
14 48
|
syl |
|
| 50 |
|
nn0addge1 |
|
| 51 |
47 49 50
|
syl2anc |
|
| 52 |
|
breq2 |
|
| 53 |
51 52
|
syl5ibrcom |
|
| 54 |
44 53
|
syld |
|
| 55 |
33
|
fveq2d |
|
| 56 |
55
|
breq2d |
|
| 57 |
|
plymulcl |
|
| 58 |
4 12 57
|
syl2anc |
|
| 59 |
|
plysubcl |
|
| 60 |
9 58 59
|
syl2anc |
|
| 61 |
|
dgrcl |
|
| 62 |
60 61
|
syl |
|
| 63 |
62
|
nn0red |
|
| 64 |
47 63
|
lenltd |
|
| 65 |
56 64
|
bitr3d |
|
| 66 |
54 65
|
sylibd |
|
| 67 |
66
|
necon4ad |
|
| 68 |
|
eqid |
|
| 69 |
68
|
quotdgr |
|
| 70 |
9 4 10 69
|
syl3anc |
|
| 71 |
39 67 70
|
mpjaod |
|
| 72 |
|
df-0p |
|
| 73 |
71 72
|
eqtrdi |
|
| 74 |
|
ofsubeq0 |
|
| 75 |
18 20 29 74
|
syl3anc |
|
| 76 |
73 75
|
mpbid |
|
| 77 |
76
|
eqcomd |
|