| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta1.1 |
|
| 2 |
|
vieta1.2 |
|
| 3 |
|
vieta1.3 |
|
| 4 |
|
vieta1.4 |
|
| 5 |
|
vieta1.5 |
|
| 6 |
|
vieta1lem.6 |
|
| 7 |
|
vieta1lem.7 |
|
| 8 |
|
vieta1lem.8 |
|
| 9 |
|
vieta1lem.9 |
|
| 10 |
|
plyssc |
|
| 11 |
4
|
adantr |
|
| 12 |
10 11
|
sselid |
|
| 13 |
|
cnvimass |
|
| 14 |
3 13
|
eqsstri |
|
| 15 |
|
plyf |
|
| 16 |
4 15
|
syl |
|
| 17 |
14 16
|
fssdm |
|
| 18 |
17
|
sselda |
|
| 19 |
|
eqid |
|
| 20 |
19
|
plyremlem |
|
| 21 |
18 20
|
syl |
|
| 22 |
21
|
simp1d |
|
| 23 |
21
|
simp2d |
|
| 24 |
|
ax-1ne0 |
|
| 25 |
24
|
a1i |
|
| 26 |
23 25
|
eqnetrd |
|
| 27 |
|
fveq2 |
|
| 28 |
|
dgr0 |
|
| 29 |
27 28
|
eqtrdi |
|
| 30 |
29
|
necon3i |
|
| 31 |
26 30
|
syl |
|
| 32 |
|
quotcl2 |
|
| 33 |
12 22 31 32
|
syl3anc |
|
| 34 |
9 33
|
eqeltrid |
|
| 35 |
|
1cnd |
|
| 36 |
6
|
nncnd |
|
| 37 |
36
|
adantr |
|
| 38 |
|
dgrcl |
|
| 39 |
34 38
|
syl |
|
| 40 |
39
|
nn0cnd |
|
| 41 |
|
ax-1cn |
|
| 42 |
|
addcom |
|
| 43 |
41 37 42
|
sylancr |
|
| 44 |
7 2
|
eqtrdi |
|
| 45 |
44
|
adantr |
|
| 46 |
3
|
eleq2i |
|
| 47 |
16
|
ffnd |
|
| 48 |
|
fniniseg |
|
| 49 |
47 48
|
syl |
|
| 50 |
46 49
|
bitrid |
|
| 51 |
50
|
simplbda |
|
| 52 |
19
|
facth |
|
| 53 |
11 18 51 52
|
syl3anc |
|
| 54 |
9
|
oveq2i |
|
| 55 |
53 54
|
eqtr4di |
|
| 56 |
55
|
fveq2d |
|
| 57 |
6
|
peano2nnd |
|
| 58 |
7 57
|
eqeltrrd |
|
| 59 |
58
|
nnne0d |
|
| 60 |
2 59
|
eqnetrrid |
|
| 61 |
|
fveq2 |
|
| 62 |
61 28
|
eqtrdi |
|
| 63 |
62
|
necon3i |
|
| 64 |
60 63
|
syl |
|
| 65 |
64
|
adantr |
|
| 66 |
55 65
|
eqnetrrd |
|
| 67 |
|
plymul0or |
|
| 68 |
22 34 67
|
syl2anc |
|
| 69 |
68
|
necon3abid |
|
| 70 |
66 69
|
mpbid |
|
| 71 |
|
neanior |
|
| 72 |
70 71
|
sylibr |
|
| 73 |
72
|
simprd |
|
| 74 |
|
eqid |
|
| 75 |
|
eqid |
|
| 76 |
74 75
|
dgrmul |
|
| 77 |
22 31 34 73 76
|
syl22anc |
|
| 78 |
45 56 77
|
3eqtrd |
|
| 79 |
23
|
oveq1d |
|
| 80 |
43 78 79
|
3eqtrd |
|
| 81 |
35 37 40 80
|
addcanad |
|
| 82 |
34 81
|
jca |
|