Metamath Proof Explorer


Theorem facth

Description: The factor theorem. If a polynomial F has a root at A , then G = x - A is a factor of F (and the other factor is F quot G ). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis facth.1 G=Xpf×A
Assertion facth FPolySAFA=0F=G×fFquotG

Proof

Step Hyp Ref Expression
1 facth.1 G=Xpf×A
2 eqid FfG×fFquotG=FfG×fFquotG
3 1 2 plyrem FPolySAFfG×fFquotG=×FA
4 3 3adant3 FPolySAFA=0FfG×fFquotG=×FA
5 simp3 FPolySAFA=0FA=0
6 5 sneqd FPolySAFA=0FA=0
7 6 xpeq2d FPolySAFA=0×FA=×0
8 4 7 eqtrd FPolySAFA=0FfG×fFquotG=×0
9 cnex V
10 9 a1i FPolySAFA=0V
11 simp1 FPolySAFA=0FPolyS
12 plyf FPolySF:
13 11 12 syl FPolySAFA=0F:
14 1 plyremlem AGPolydegG=1G-10=A
15 14 3ad2ant2 FPolySAFA=0GPolydegG=1G-10=A
16 15 simp1d FPolySAFA=0GPoly
17 plyssc PolySPoly
18 17 11 sselid FPolySAFA=0FPoly
19 15 simp2d FPolySAFA=0degG=1
20 ax-1ne0 10
21 20 a1i FPolySAFA=010
22 19 21 eqnetrd FPolySAFA=0degG0
23 fveq2 G=0𝑝degG=deg0𝑝
24 dgr0 deg0𝑝=0
25 23 24 eqtrdi G=0𝑝degG=0
26 25 necon3i degG0G0𝑝
27 22 26 syl FPolySAFA=0G0𝑝
28 quotcl2 FPolyGPolyG0𝑝FquotGPoly
29 18 16 27 28 syl3anc FPolySAFA=0FquotGPoly
30 plymulcl GPolyFquotGPolyG×fFquotGPoly
31 16 29 30 syl2anc FPolySAFA=0G×fFquotGPoly
32 plyf G×fFquotGPolyG×fFquotG:
33 31 32 syl FPolySAFA=0G×fFquotG:
34 ofsubeq0 VF:G×fFquotG:FfG×fFquotG=×0F=G×fFquotG
35 10 13 33 34 syl3anc FPolySAFA=0FfG×fFquotG=×0F=G×fFquotG
36 8 35 mpbid FPolySAFA=0F=G×fFquotG