| Step |
Hyp |
Ref |
Expression |
| 1 |
|
facth.1 |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
plyrem |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
simp3 |
|
| 6 |
5
|
sneqd |
|
| 7 |
6
|
xpeq2d |
|
| 8 |
4 7
|
eqtrd |
|
| 9 |
|
cnex |
|
| 10 |
9
|
a1i |
|
| 11 |
|
simp1 |
|
| 12 |
|
plyf |
|
| 13 |
11 12
|
syl |
|
| 14 |
1
|
plyremlem |
|
| 15 |
14
|
3ad2ant2 |
|
| 16 |
15
|
simp1d |
|
| 17 |
|
plyssc |
|
| 18 |
17 11
|
sselid |
|
| 19 |
15
|
simp2d |
|
| 20 |
|
ax-1ne0 |
|
| 21 |
20
|
a1i |
|
| 22 |
19 21
|
eqnetrd |
|
| 23 |
|
fveq2 |
|
| 24 |
|
dgr0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
necon3i |
|
| 27 |
22 26
|
syl |
|
| 28 |
|
quotcl2 |
|
| 29 |
18 16 27 28
|
syl3anc |
|
| 30 |
|
plymulcl |
|
| 31 |
16 29 30
|
syl2anc |
|
| 32 |
|
plyf |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
ofsubeq0 |
|
| 35 |
10 13 33 34
|
syl3anc |
|
| 36 |
8 35
|
mpbid |
|