Description: The factor theorem. If a polynomial F has a root at A , then G = x - A is a factor of F (and the other factor is F quot G ). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | facth.1 | |
|
Assertion | facth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | facth.1 | |
|
2 | eqid | |
|
3 | 1 2 | plyrem | |
4 | 3 | 3adant3 | |
5 | simp3 | |
|
6 | 5 | sneqd | |
7 | 6 | xpeq2d | |
8 | 4 7 | eqtrd | |
9 | cnex | |
|
10 | 9 | a1i | |
11 | simp1 | |
|
12 | plyf | |
|
13 | 11 12 | syl | |
14 | 1 | plyremlem | |
15 | 14 | 3ad2ant2 | |
16 | 15 | simp1d | |
17 | plyssc | |
|
18 | 17 11 | sselid | |
19 | 15 | simp2d | |
20 | ax-1ne0 | |
|
21 | 20 | a1i | |
22 | 19 21 | eqnetrd | |
23 | fveq2 | |
|
24 | dgr0 | |
|
25 | 23 24 | eqtrdi | |
26 | 25 | necon3i | |
27 | 22 26 | syl | |
28 | quotcl2 | |
|
29 | 18 16 27 28 | syl3anc | |
30 | plymulcl | |
|
31 | 16 29 30 | syl2anc | |
32 | plyf | |
|
33 | 31 32 | syl | |
34 | ofsubeq0 | |
|
35 | 10 13 33 34 | syl3anc | |
36 | 8 35 | mpbid | |