| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1.1 |
|
| 2 |
|
fta1.2 |
|
| 3 |
|
fta1.3 |
|
| 4 |
|
fta1.4 |
|
| 5 |
|
fta1.5 |
|
| 6 |
|
fta1.6 |
|
| 7 |
|
eldifsn |
|
| 8 |
3 7
|
sylib |
|
| 9 |
8
|
simpld |
|
| 10 |
|
plyf |
|
| 11 |
|
ffn |
|
| 12 |
|
fniniseg |
|
| 13 |
9 10 11 12
|
4syl |
|
| 14 |
5 13
|
mpbid |
|
| 15 |
14
|
simpld |
|
| 16 |
14
|
simprd |
|
| 17 |
|
eqid |
|
| 18 |
17
|
facth |
|
| 19 |
9 15 16 18
|
syl3anc |
|
| 20 |
19
|
cnveqd |
|
| 21 |
20
|
imaeq1d |
|
| 22 |
|
cnex |
|
| 23 |
22
|
a1i |
|
| 24 |
|
ssid |
|
| 25 |
|
ax-1cn |
|
| 26 |
|
plyid |
|
| 27 |
24 25 26
|
mp2an |
|
| 28 |
|
plyconst |
|
| 29 |
24 15 28
|
sylancr |
|
| 30 |
|
plysubcl |
|
| 31 |
27 29 30
|
sylancr |
|
| 32 |
|
plyf |
|
| 33 |
31 32
|
syl |
|
| 34 |
17
|
plyremlem |
|
| 35 |
15 34
|
syl |
|
| 36 |
35
|
simp2d |
|
| 37 |
|
ax-1ne0 |
|
| 38 |
37
|
a1i |
|
| 39 |
36 38
|
eqnetrd |
|
| 40 |
|
fveq2 |
|
| 41 |
|
dgr0 |
|
| 42 |
40 41
|
eqtrdi |
|
| 43 |
42
|
necon3i |
|
| 44 |
39 43
|
syl |
|
| 45 |
|
quotcl2 |
|
| 46 |
9 31 44 45
|
syl3anc |
|
| 47 |
|
plyf |
|
| 48 |
46 47
|
syl |
|
| 49 |
|
ofmulrt |
|
| 50 |
23 33 48 49
|
syl3anc |
|
| 51 |
35
|
simp3d |
|
| 52 |
51
|
uneq1d |
|
| 53 |
21 50 52
|
3eqtrd |
|
| 54 |
|
uncom |
|
| 55 |
53 1 54
|
3eqtr4g |
|
| 56 |
25
|
a1i |
|
| 57 |
|
dgrcl |
|
| 58 |
46 57
|
syl |
|
| 59 |
58
|
nn0cnd |
|
| 60 |
2
|
nn0cnd |
|
| 61 |
|
addcom |
|
| 62 |
25 60 61
|
sylancr |
|
| 63 |
19
|
fveq2d |
|
| 64 |
8
|
simprd |
|
| 65 |
19
|
eqcomd |
|
| 66 |
|
0cnd |
|
| 67 |
|
mul01 |
|
| 68 |
67
|
adantl |
|
| 69 |
23 33 66 66 68
|
caofid1 |
|
| 70 |
|
df-0p |
|
| 71 |
70
|
oveq2i |
|
| 72 |
69 71 70
|
3eqtr4g |
|
| 73 |
64 65 72
|
3netr4d |
|
| 74 |
|
oveq2 |
|
| 75 |
74
|
necon3i |
|
| 76 |
73 75
|
syl |
|
| 77 |
|
eqid |
|
| 78 |
|
eqid |
|
| 79 |
77 78
|
dgrmul |
|
| 80 |
31 44 46 76 79
|
syl22anc |
|
| 81 |
63 4 80
|
3eqtr3d |
|
| 82 |
36
|
oveq1d |
|
| 83 |
62 81 82
|
3eqtrrd |
|
| 84 |
56 59 60 83
|
addcanad |
|
| 85 |
|
fveqeq2 |
|
| 86 |
|
cnveq |
|
| 87 |
86
|
imaeq1d |
|
| 88 |
87
|
eleq1d |
|
| 89 |
87
|
fveq2d |
|
| 90 |
|
fveq2 |
|
| 91 |
89 90
|
breq12d |
|
| 92 |
88 91
|
anbi12d |
|
| 93 |
85 92
|
imbi12d |
|
| 94 |
|
eldifsn |
|
| 95 |
46 76 94
|
sylanbrc |
|
| 96 |
93 6 95
|
rspcdva |
|
| 97 |
84 96
|
mpd |
|
| 98 |
97
|
simpld |
|
| 99 |
|
snfi |
|
| 100 |
|
unfi |
|
| 101 |
98 99 100
|
sylancl |
|
| 102 |
55 101
|
eqeltrd |
|
| 103 |
55
|
fveq2d |
|
| 104 |
|
hashcl |
|
| 105 |
101 104
|
syl |
|
| 106 |
105
|
nn0red |
|
| 107 |
|
hashcl |
|
| 108 |
98 107
|
syl |
|
| 109 |
108
|
nn0red |
|
| 110 |
|
peano2re |
|
| 111 |
109 110
|
syl |
|
| 112 |
|
dgrcl |
|
| 113 |
9 112
|
syl |
|
| 114 |
113
|
nn0red |
|
| 115 |
|
hashun2 |
|
| 116 |
98 99 115
|
sylancl |
|
| 117 |
|
hashsng |
|
| 118 |
15 117
|
syl |
|
| 119 |
118
|
oveq2d |
|
| 120 |
116 119
|
breqtrd |
|
| 121 |
2
|
nn0red |
|
| 122 |
|
1red |
|
| 123 |
97
|
simprd |
|
| 124 |
123 84
|
breqtrd |
|
| 125 |
109 121 122 124
|
leadd1dd |
|
| 126 |
125 4
|
breqtrrd |
|
| 127 |
106 111 114 120 126
|
letrd |
|
| 128 |
103 127
|
eqbrtrd |
|
| 129 |
102 128
|
jca |
|