Step |
Hyp |
Ref |
Expression |
1 |
|
fta1.1 |
⊢ 𝑅 = ( ◡ 𝐹 “ { 0 } ) |
2 |
|
fta1.2 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
3 |
|
fta1.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) |
4 |
|
fta1.4 |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) = ( 𝐷 + 1 ) ) |
5 |
|
fta1.5 |
⊢ ( 𝜑 → 𝐴 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
6 |
|
fta1.6 |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝐷 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) |
7 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↔ ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐹 ≠ 0𝑝 ) ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐹 ≠ 0𝑝 ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
10 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
11 |
|
ffn |
⊢ ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ ) |
12 |
|
fniniseg |
⊢ ( 𝐹 Fn ℂ → ( 𝐴 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) ) |
13 |
9 10 11 12
|
4syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) ) |
14 |
5 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
16 |
14
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 0 ) |
17 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) = ( Xp ∘f − ( ℂ × { 𝐴 } ) ) |
18 |
17
|
facth |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) |
19 |
9 15 16 18
|
syl3anc |
⊢ ( 𝜑 → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) |
20 |
19
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐹 = ◡ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) |
21 |
20
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) = ( ◡ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) “ { 0 } ) ) |
22 |
|
cnex |
⊢ ℂ ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
24 |
|
ssid |
⊢ ℂ ⊆ ℂ |
25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
26 |
|
plyid |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) ) |
27 |
24 25 26
|
mp2an |
⊢ Xp ∈ ( Poly ‘ ℂ ) |
28 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
29 |
24 15 28
|
sylancr |
⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
30 |
|
plysubcl |
⊢ ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ) |
31 |
27 29 30
|
sylancr |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ) |
32 |
|
plyf |
⊢ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) : ℂ ⟶ ℂ ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) : ℂ ⟶ ℂ ) |
34 |
17
|
plyremlem |
⊢ ( 𝐴 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) = { 𝐴 } ) ) |
35 |
15 34
|
syl |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) = { 𝐴 } ) ) |
36 |
35
|
simp2d |
⊢ ( 𝜑 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = 1 ) |
37 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
39 |
36 38
|
eqnetrd |
⊢ ( 𝜑 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0 ) |
40 |
|
fveq2 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = ( deg ‘ 0𝑝 ) ) |
41 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
42 |
40 41
|
eqtrdi |
⊢ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = 0 ) |
43 |
42
|
necon3i |
⊢ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0 → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ≠ 0𝑝 ) |
44 |
39 43
|
syl |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ≠ 0𝑝 ) |
45 |
|
quotcl2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ≠ 0𝑝 ) → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) ) |
46 |
9 31 44 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) ) |
47 |
|
plyf |
⊢ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) : ℂ ⟶ ℂ ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) : ℂ ⟶ ℂ ) |
49 |
|
ofmulrt |
⊢ ( ( ℂ ∈ V ∧ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) : ℂ ⟶ ℂ ∧ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) : ℂ ⟶ ℂ ) → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ) |
50 |
23 33 48 49
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ) |
51 |
35
|
simp3d |
⊢ ( 𝜑 → ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) = { 𝐴 } ) |
52 |
51
|
uneq1d |
⊢ ( 𝜑 → ( ( ◡ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) “ { 0 } ) ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) = ( { 𝐴 } ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ) |
53 |
21 50 52
|
3eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) = ( { 𝐴 } ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ) |
54 |
|
uncom |
⊢ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) |
55 |
53 1 54
|
3eqtr4g |
⊢ ( 𝜑 → 𝑅 = ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) |
56 |
25
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
57 |
|
dgrcl |
⊢ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ∈ ℕ0 ) |
58 |
46 57
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ∈ ℕ0 ) |
59 |
58
|
nn0cnd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ∈ ℂ ) |
60 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
61 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
62 |
25 60 61
|
sylancr |
⊢ ( 𝜑 → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
63 |
19
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) = ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
64 |
8
|
simprd |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
65 |
19
|
eqcomd |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = 𝐹 ) |
66 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
67 |
|
mul01 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · 0 ) = 0 ) |
69 |
23 33 66 66 68
|
caofid1 |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( ℂ × { 0 } ) ) = ( ℂ × { 0 } ) ) |
70 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
71 |
70
|
oveq2i |
⊢ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · 0𝑝 ) = ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( ℂ × { 0 } ) ) |
72 |
69 71 70
|
3eqtr4g |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · 0𝑝 ) = 0𝑝 ) |
73 |
64 65 72
|
3netr4d |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ≠ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · 0𝑝 ) ) |
74 |
|
oveq2 |
⊢ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = 0𝑝 → ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · 0𝑝 ) ) |
75 |
74
|
necon3i |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ≠ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · 0𝑝 ) → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0𝑝 ) |
76 |
73 75
|
syl |
⊢ ( 𝜑 → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0𝑝 ) |
77 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) |
78 |
|
eqid |
⊢ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) |
79 |
77 78
|
dgrmul |
⊢ ( ( ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ≠ 0𝑝 ) ∧ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0𝑝 ) ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
80 |
31 44 46 76 79
|
syl22anc |
⊢ ( 𝜑 → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
81 |
63 4 80
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐷 + 1 ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
82 |
36
|
oveq1d |
⊢ ( 𝜑 → ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) = ( 1 + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
83 |
62 81 82
|
3eqtrrd |
⊢ ( 𝜑 → ( 1 + ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) = ( 1 + 𝐷 ) ) |
84 |
56 59 60 83
|
addcanad |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = 𝐷 ) |
85 |
|
fveqeq2 |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ( deg ‘ 𝑔 ) = 𝐷 ↔ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = 𝐷 ) ) |
86 |
|
cnveq |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ◡ 𝑔 = ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) |
87 |
86
|
imaeq1d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ◡ 𝑔 “ { 0 } ) = ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) |
88 |
87
|
eleq1d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ↔ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ) ) |
89 |
87
|
fveq2d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) = ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ) |
90 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( deg ‘ 𝑔 ) = ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) |
91 |
89 90
|
breq12d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ↔ ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
92 |
88 91
|
anbi12d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ↔ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) ) |
93 |
85 92
|
imbi12d |
⊢ ( 𝑔 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) → ( ( ( deg ‘ 𝑔 ) = 𝐷 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ↔ ( ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = 𝐷 → ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) ) ) |
94 |
|
eldifsn |
⊢ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↔ ( ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ≠ 0𝑝 ) ) |
95 |
46 76 94
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) |
96 |
93 6 95
|
rspcdva |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) = 𝐷 → ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) ) |
97 |
84 96
|
mpd |
⊢ ( 𝜑 → ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) ) |
98 |
97
|
simpld |
⊢ ( 𝜑 → ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ) |
99 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
100 |
|
unfi |
⊢ ( ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ { 𝐴 } ∈ Fin ) → ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ∈ Fin ) |
101 |
98 99 100
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ∈ Fin ) |
102 |
55 101
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
103 |
55
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ) |
104 |
|
hashcl |
⊢ ( ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ∈ Fin → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ∈ ℕ0 ) |
105 |
101 104
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ∈ ℕ0 ) |
106 |
105
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ∈ ℝ ) |
107 |
|
hashcl |
⊢ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin → ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ∈ ℕ0 ) |
108 |
98 107
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ∈ ℕ0 ) |
109 |
108
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ∈ ℝ ) |
110 |
|
peano2re |
⊢ ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ∈ ℝ → ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ∈ ℝ ) |
111 |
109 110
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ∈ ℝ ) |
112 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
113 |
9 112
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
114 |
113
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℝ ) |
115 |
|
hashun2 |
⊢ ( ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∈ Fin ∧ { 𝐴 } ∈ Fin ) → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + ( ♯ ‘ { 𝐴 } ) ) ) |
116 |
98 99 115
|
sylancl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + ( ♯ ‘ { 𝐴 } ) ) ) |
117 |
|
hashsng |
⊢ ( 𝐴 ∈ ℂ → ( ♯ ‘ { 𝐴 } ) = 1 ) |
118 |
15 117
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
119 |
118
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + ( ♯ ‘ { 𝐴 } ) ) = ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ) |
120 |
116 119
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ) |
121 |
2
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
122 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
123 |
97
|
simprd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) ) ) |
124 |
123 84
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) ≤ 𝐷 ) |
125 |
109 121 122 124
|
leadd1dd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ≤ ( 𝐷 + 1 ) ) |
126 |
125 4
|
breqtrrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ) + 1 ) ≤ ( deg ‘ 𝐹 ) ) |
127 |
106 111 114 120 126
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) “ { 0 } ) ∪ { 𝐴 } ) ) ≤ ( deg ‘ 𝐹 ) ) |
128 |
103 127
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) |
129 |
102 128
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |