| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimno1.1 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 2 |
|
rlimno1.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) |
| 3 |
|
rlimno1.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
rlimno1.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 5 |
|
fal |
⊢ ¬ ⊥ |
| 6 |
3 4
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
| 13 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ+ ) |
| 15 |
|
max1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 16 |
10 9 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 17 |
12 14 16
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
| 18 |
17
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ+ ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) |
| 20 |
8 18 19
|
rlimi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ) |
| 21 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) |
| 22 |
7 21
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) |
| 23 |
|
rlimss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) |
| 24 |
2 23
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) |
| 25 |
22 24
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 27 |
|
rexanre |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
| 29 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 30 |
25 29
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 31 |
|
supxrunb1 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 33 |
1 32
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
| 35 |
|
r19.29 |
⊢ ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
| 36 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
| 37 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 39 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ≠ 0 ) |
| 41 |
38 40
|
reccld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 42 |
41
|
subid1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( 1 / 𝐵 ) − 0 ) = ( 1 / 𝐵 ) ) |
| 43 |
42
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( abs ‘ ( 1 / 𝐵 ) ) ) |
| 44 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℂ ) |
| 45 |
44 38 40
|
absdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( 1 / 𝐵 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) ) |
| 46 |
10
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℝ ) |
| 47 |
|
0le1 |
⊢ 0 ≤ 1 |
| 48 |
47
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 0 ≤ 1 ) |
| 49 |
46 48
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 1 ) = 1 ) |
| 50 |
49
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 51 |
43 45 50
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 52 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
| 53 |
52
|
rprecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ ) |
| 54 |
37 39
|
absrpcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
| 56 |
55
|
rprecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 57 |
55
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 58 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 59 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ 𝑦 ) |
| 61 |
|
max2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 62 |
10 58 61
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 63 |
57 58 59 60 62
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 64 |
55 52 46 48 63
|
lediv2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ≤ ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 65 |
53 56 64
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( 1 / ( abs ‘ 𝐵 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
| 66 |
51 65
|
eqnbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
| 67 |
66
|
pm2.21d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) → ⊥ ) ) |
| 68 |
67
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ 𝐵 ) ≤ 𝑦 ∧ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) → ⊥ ) ) |
| 69 |
68
|
ancomsd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
| 70 |
69
|
imim2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ( 𝑐 ≤ 𝑥 → ⊥ ) ) ) |
| 71 |
70
|
impcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 72 |
71
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 73 |
36 72
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 74 |
73
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 75 |
35 74
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 76 |
34 75
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
| 77 |
28 76
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
| 78 |
20 77
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
| 79 |
5 78
|
mtoi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ¬ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 80 |
79
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 81 |
25 3
|
elo1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 82 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 83 |
81 82
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 84 |
80 83
|
mtbird |
⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |