| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmdvdsprod.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rprmdvdsprod.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 3 |
|
rprmdvdsprod.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
rprmdvdsprod.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
rprmdvdsprod.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 6 |
|
rprmdvdsprod.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
rprmdvdsprod.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 8 |
|
rprmdvdsprod.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
rprmdvdsprod.2 |
⊢ ( 𝜑 → 𝐹 finSupp 1 ) |
| 10 |
|
rprmdvdsprod.f |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 11 |
|
rprmdvdsprod.3 |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑀 Σg 𝐹 ) ) |
| 12 |
5 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 13 |
5 4
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 15 |
5 14
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 16 |
5
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
| 17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 18 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∩ ( 𝐹 supp 1 ) ) = ∅ ) |
| 20 |
|
suppssdm |
⊢ ( 𝐹 supp 1 ) ⊆ dom 𝐹 |
| 21 |
20 10
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ⊆ 𝐼 ) |
| 22 |
|
undifr |
⊢ ( ( 𝐹 supp 1 ) ⊆ 𝐼 ↔ ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 ) |
| 23 |
21 22
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) = 𝐼 ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∪ ( 𝐹 supp 1 ) ) ) |
| 25 |
12 13 15 17 8 10 9 19 24
|
gsumsplit |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
| 26 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ⊆ 𝐼 ) |
| 27 |
10 26
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 28 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐹 Fn 𝐼 ) |
| 30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 31 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 32 |
1 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 1 ∈ 𝐵 ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) |
| 36 |
29 30 34 35
|
fvdifsupp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) → ( 𝐹 ‘ 𝑧 ) = 1 ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) |
| 38 |
27 37
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) = ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) ) |
| 40 |
17
|
cmnmndd |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 41 |
8
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V ) |
| 42 |
13
|
gsumz |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ∈ V ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 ) |
| 43 |
40 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑧 ∈ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ↦ 1 ) ) = 1 ) |
| 44 |
39 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) = 1 ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝐼 ∖ ( 𝐹 supp 1 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
| 46 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ∈ V ) |
| 47 |
10 21
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) : ( 𝐹 supp 1 ) ⟶ 𝐵 ) |
| 48 |
9 33
|
fsuppres |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐹 supp 1 ) ) finSupp 1 ) |
| 49 |
12 13 17 46 47 48
|
gsumcl |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ∈ 𝐵 ) |
| 50 |
1 14 4 31 49
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑅 ) ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
| 51 |
25 45 50
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
| 52 |
11 51
|
breqtrd |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
| 53 |
|
reseq2 |
⊢ ( 𝑏 = ∅ → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ∅ ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑏 = ∅ → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 55 |
54
|
breq2d |
⊢ ( 𝑏 = ∅ → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) ) |
| 56 |
|
rexeq |
⊢ ( 𝑏 = ∅ → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 57 |
55 56
|
imbi12d |
⊢ ( 𝑏 = ∅ → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 58 |
|
reseq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ 𝑎 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑏 = 𝑎 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) ) |
| 61 |
|
rexeq |
⊢ ( 𝑏 = 𝑎 → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 62 |
60 61
|
imbi12d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 63 |
|
reseq2 |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
| 65 |
64
|
breq2d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ) |
| 66 |
|
rexeq |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 |
65 66
|
imbi12d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 𝑦 } ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 68 |
|
reseq2 |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝐹 ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) |
| 70 |
69
|
breq2d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) ↔ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) ) ) |
| 71 |
|
rexeq |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 72 |
70 71
|
imbi12d |
⊢ ( 𝑏 = ( 𝐹 supp 1 ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑏 ) ) → ∃ 𝑥 ∈ 𝑏 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 73 |
4 3 2 6 7
|
rprmndvdsr1 |
⊢ ( 𝜑 → ¬ 𝑄 ∥ 1 ) |
| 74 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 75 |
74
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ ) |
| 76 |
13
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = 1 |
| 77 |
75 76
|
eqtri |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1 |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = 1 ) |
| 79 |
78
|
breq2d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ↔ 𝑄 ∥ 1 ) ) |
| 80 |
73 79
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 81 |
80
|
pm2.21d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) → ∃ 𝑥 ∈ ∅ 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 82 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 83 |
82
|
syldbl2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
| 84 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) → 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) |
| 85 |
|
vex |
⊢ 𝑦 ∈ V |
| 86 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 87 |
86
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) ) |
| 88 |
85 87
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) |
| 89 |
84 88
|
sylibr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) ∧ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
| 90 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑅 ∈ CRing ) |
| 91 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∈ 𝑃 ) |
| 92 |
90 16
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ CMnd ) |
| 93 |
|
vex |
⊢ 𝑎 ∈ V |
| 94 |
93
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ V ) |
| 95 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 96 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ⊆ ( 𝐹 supp 1 ) ) |
| 97 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ⊆ 𝐼 ) |
| 98 |
96 97
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ⊆ 𝐼 ) |
| 99 |
95 98
|
fssresd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ↾ 𝑎 ) : 𝑎 ⟶ 𝐵 ) |
| 100 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 1 ) ∈ Fin ) |
| 101 |
100
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 supp 1 ) ∈ Fin ) |
| 102 |
101 96
|
ssfid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑎 ∈ Fin ) |
| 103 |
33
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 1 ∈ 𝐵 ) |
| 104 |
99 102 103
|
fdmfifsupp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ↾ 𝑎 ) finSupp 1 ) |
| 105 |
12 13 92 94 99 104
|
gsumcl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ∈ 𝐵 ) |
| 106 |
97
|
ssdifssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ⊆ 𝐼 ) |
| 107 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) |
| 108 |
106 107
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑦 ∈ 𝐼 ) |
| 109 |
95 108
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 110 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
| 111 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
| 112 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) |
| 113 |
40
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑀 ∈ Mnd ) |
| 114 |
107
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ¬ 𝑦 ∈ 𝑎 ) |
| 115 |
95
|
fimassd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 ) |
| 116 |
12 111
|
cntzcmn |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ 𝐵 ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 ) |
| 117 |
92 115 116
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) = 𝐵 ) |
| 118 |
115 117
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ⊆ ( ( Cntz ‘ 𝑀 ) ‘ ( 𝐹 “ ( 𝑎 ∪ { 𝑦 } ) ) ) ) |
| 119 |
12 15 111 112 95 98 113 102 114 108 109 118
|
gsumzresunsn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 120 |
110 119
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → 𝑄 ∥ ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 121 |
1 2 3 14 90 91 105 109 120
|
rprmdvds |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ∨ 𝑄 ∥ ( 𝐹 ‘ 𝑦 ) ) ) |
| 122 |
83 89 121
|
orim12da |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ( ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 123 |
|
rexun |
⊢ ( ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ↔ ( ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑦 } 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 124 |
122 123
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ∧ ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |
| 125 |
124
|
exp31 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝐹 supp 1 ) ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 126 |
125
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ ( 𝐹 supp 1 ) ∧ 𝑦 ∈ ( ( 𝐹 supp 1 ) ∖ 𝑎 ) ) ) → ( ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) → ∃ 𝑥 ∈ 𝑎 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑎 ∪ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝑎 ∪ { 𝑦 } ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 127 |
57 62 67 72 81 126 100
|
findcard2d |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑀 Σg ( 𝐹 ↾ ( 𝐹 supp 1 ) ) ) → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) ) |
| 128 |
52 127
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐹 supp 1 ) 𝑄 ∥ ( 𝐹 ‘ 𝑥 ) ) |