| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | taylpfval.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | taylpfval.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 4 |  | taylpfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | taylpfval.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 6 |  | taylpfval.t | ⊢ 𝑇  =  ( 𝑁 ( 𝑆  Tayl  𝐹 ) 𝐵 ) | 
						
							| 7 |  | taylply2.1 | ⊢ ( 𝜑  →  𝐷  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 8 |  | taylply2.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 9 |  | taylply2.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ∈  𝐷 ) | 
						
							| 10 | 1 2 3 4 5 6 | taylpfval | ⊢ ( 𝜑  →  𝑇  =  ( 𝑥  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑥  −  𝐵 ) ↑ 𝑘 ) ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 12 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 14 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  𝑆 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 15 | 13 1 2 3 14 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 16 |  | dvnbss | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  𝐹 ) | 
						
							| 17 | 1 15 4 16 | syl3anc | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  𝐹 ) | 
						
							| 18 | 2 17 | fssdmd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  𝐴 ) | 
						
							| 19 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 21 | 3 20 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 22 | 18 21 | sstrd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  ℂ ) | 
						
							| 23 | 22 5 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 25 | 11 24 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝑥  −  𝐵 )  ∈  ℂ ) | 
						
							| 26 |  | df-idp | ⊢ Xp  =  (  I   ↾  ℂ ) | 
						
							| 27 |  | mptresid | ⊢ (  I   ↾  ℂ )  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) | 
						
							| 28 | 26 27 | eqtri | ⊢ Xp  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  Xp  =  ( 𝑥  ∈  ℂ  ↦  𝑥 ) ) | 
						
							| 30 |  | fconstmpt | ⊢ ( ℂ  ×  { 𝐵 } )  =  ( 𝑥  ∈  ℂ  ↦  𝐵 ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝐵 } )  =  ( 𝑥  ∈  ℂ  ↦  𝐵 ) ) | 
						
							| 32 | 13 11 24 29 31 | offval2 | ⊢ ( 𝜑  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑥  −  𝐵 ) ) ) | 
						
							| 33 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  −  𝐵 )  →  ( 𝑦 ↑ 𝑘 )  =  ( ( 𝑥  −  𝐵 ) ↑ 𝑘 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  −  𝐵 )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑥  −  𝐵 ) ↑ 𝑘 ) ) ) | 
						
							| 36 | 35 | sumeq2sdv | ⊢ ( 𝑦  =  ( 𝑥  −  𝐵 )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑥  −  𝐵 ) ↑ 𝑘 ) ) ) | 
						
							| 37 | 25 32 33 36 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∘  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  =  ( 𝑥  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑥  −  𝐵 ) ↑ 𝑘 ) ) ) ) | 
						
							| 38 | 10 37 | eqtr4d | ⊢ ( 𝜑  →  𝑇  =  ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∘  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) ) | 
						
							| 39 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 40 | 39 | subrgss | ⊢ ( 𝐷  ∈  ( SubRing ‘ ℂfld )  →  𝐷  ⊆  ℂ ) | 
						
							| 41 | 7 40 | syl | ⊢ ( 𝜑  →  𝐷  ⊆  ℂ ) | 
						
							| 42 | 41 4 9 | elplyd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 43 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 44 | 43 | subrg1cl | ⊢ ( 𝐷  ∈  ( SubRing ‘ ℂfld )  →  1  ∈  𝐷 ) | 
						
							| 45 | 7 44 | syl | ⊢ ( 𝜑  →  1  ∈  𝐷 ) | 
						
							| 46 |  | plyid | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  1  ∈  𝐷 )  →  Xp  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 47 | 41 45 46 | syl2anc | ⊢ ( 𝜑  →  Xp  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 48 |  | plyconst | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  𝐵  ∈  𝐷 )  →  ( ℂ  ×  { 𝐵 } )  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 49 | 41 8 48 | syl2anc | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝐵 } )  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 50 |  | subrgsubg | ⊢ ( 𝐷  ∈  ( SubRing ‘ ℂfld )  →  𝐷  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 51 | 7 50 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 52 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 53 | 52 | subgcl | ⊢ ( ( 𝐷  ∈  ( SubGrp ‘ ℂfld )  ∧  𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 )  →  ( 𝑢  +  𝑣 )  ∈  𝐷 ) | 
						
							| 54 | 53 | 3expb | ⊢ ( ( 𝐷  ∈  ( SubGrp ‘ ℂfld )  ∧  ( 𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 ) )  →  ( 𝑢  +  𝑣 )  ∈  𝐷 ) | 
						
							| 55 | 51 54 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 ) )  →  ( 𝑢  +  𝑣 )  ∈  𝐷 ) | 
						
							| 56 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 57 | 56 | subrgmcl | ⊢ ( ( 𝐷  ∈  ( SubRing ‘ ℂfld )  ∧  𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 )  →  ( 𝑢  ·  𝑣 )  ∈  𝐷 ) | 
						
							| 58 | 57 | 3expb | ⊢ ( ( 𝐷  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 ) )  →  ( 𝑢  ·  𝑣 )  ∈  𝐷 ) | 
						
							| 59 | 7 58 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐷  ∧  𝑣  ∈  𝐷 ) )  →  ( 𝑢  ·  𝑣 )  ∈  𝐷 ) | 
						
							| 60 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 61 |  | cnfldneg | ⊢ ( 1  ∈  ℂ  →  ( ( invg ‘ ℂfld ) ‘ 1 )  =  - 1 ) | 
						
							| 62 | 60 61 | ax-mp | ⊢ ( ( invg ‘ ℂfld ) ‘ 1 )  =  - 1 | 
						
							| 63 |  | eqid | ⊢ ( invg ‘ ℂfld )  =  ( invg ‘ ℂfld ) | 
						
							| 64 | 63 | subginvcl | ⊢ ( ( 𝐷  ∈  ( SubGrp ‘ ℂfld )  ∧  1  ∈  𝐷 )  →  ( ( invg ‘ ℂfld ) ‘ 1 )  ∈  𝐷 ) | 
						
							| 65 | 51 45 64 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ℂfld ) ‘ 1 )  ∈  𝐷 ) | 
						
							| 66 | 62 65 | eqeltrrid | ⊢ ( 𝜑  →  - 1  ∈  𝐷 ) | 
						
							| 67 | 47 49 55 59 66 | plysub | ⊢ ( 𝜑  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 68 | 42 67 55 59 | plyco | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∘  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 69 | 38 68 | eqeltrd | ⊢ ( 𝜑  →  𝑇  ∈  ( Poly ‘ 𝐷 ) ) | 
						
							| 70 | 38 | fveq2d | ⊢ ( 𝜑  →  ( deg ‘ 𝑇 )  =  ( deg ‘ ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∘  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) ) ) | 
						
							| 71 |  | eqid | ⊢ ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  =  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) | 
						
							| 72 |  | eqid | ⊢ ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  =  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) | 
						
							| 73 | 71 72 42 67 | dgrco | ⊢ ( 𝜑  →  ( deg ‘ ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∘  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) )  =  ( ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ·  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) | 
						
							| 75 | 74 | plyremlem | ⊢ ( 𝐵  ∈  ℂ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  =  1  ∧  ( ◡ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  “  { 0 } )  =  { 𝐵 } ) ) | 
						
							| 76 | 23 75 | syl | ⊢ ( 𝜑  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  =  1  ∧  ( ◡ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) )  “  { 0 } )  =  { 𝐵 } ) ) | 
						
							| 77 | 76 | simp2d | ⊢ ( 𝜑  →  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) )  =  1 ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ·  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) )  =  ( ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ·  1 ) ) | 
						
							| 79 |  | dgrcl | ⊢ ( ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝐷 )  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ∈  ℕ0 ) | 
						
							| 80 | 42 79 | syl | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ∈  ℕ0 ) | 
						
							| 81 | 80 | nn0cnd | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ∈  ℂ ) | 
						
							| 82 | 81 | mulridd | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ·  1 )  =  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ) | 
						
							| 83 | 78 82 | eqtrd | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ·  ( deg ‘ ( Xp  ∘f   −  ( ℂ  ×  { 𝐵 } ) ) ) )  =  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ) | 
						
							| 84 | 70 73 83 | 3eqtrd | ⊢ ( 𝜑  →  ( deg ‘ 𝑇 )  =  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) ) ) | 
						
							| 85 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 86 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 87 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 89 |  | dvnf | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 90 | 85 86 88 89 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 91 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 92 |  | dvn2bss | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 93 | 85 86 91 92 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 94 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 95 | 93 94 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 96 | 90 95 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 97 | 88 | faccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 98 | 97 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 99 | 97 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 100 | 96 98 99 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 101 | 42 4 100 33 | dgrle | ⊢ ( 𝜑  →  ( deg ‘ ( 𝑦  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 𝑦 ↑ 𝑘 ) ) ) )  ≤  𝑁 ) | 
						
							| 102 | 84 101 | eqbrtrd | ⊢ ( 𝜑  →  ( deg ‘ 𝑇 )  ≤  𝑁 ) | 
						
							| 103 | 69 102 | jca | ⊢ ( 𝜑  →  ( 𝑇  ∈  ( Poly ‘ 𝐷 )  ∧  ( deg ‘ 𝑇 )  ≤  𝑁 ) ) |