| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | taylpfval.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | taylpfval.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | taylpfval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | taylpfval.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 6 |  | taylpfval.t |  |-  T = ( N ( S Tayl F ) B ) | 
						
							| 7 |  | taylply2.1 |  |-  ( ph -> D e. ( SubRing ` CCfld ) ) | 
						
							| 8 |  | taylply2.2 |  |-  ( ph -> B e. D ) | 
						
							| 9 |  | taylply2.3 |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. D ) | 
						
							| 10 | 1 2 3 4 5 6 | taylpfval |  |-  ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ x e. CC ) -> x e. CC ) | 
						
							| 12 |  | cnex |  |-  CC e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 14 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 15 | 13 1 2 3 14 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 16 |  | dvnbss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom ( ( S Dn F ) ` N ) C_ dom F ) | 
						
							| 17 | 1 15 4 16 | syl3anc |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ dom F ) | 
						
							| 18 | 2 17 | fssdmd |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ A ) | 
						
							| 19 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 20 | 1 19 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 21 | 3 20 | sstrd |  |-  ( ph -> A C_ CC ) | 
						
							| 22 | 18 21 | sstrd |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ CC ) | 
						
							| 23 | 22 5 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ x e. CC ) -> B e. CC ) | 
						
							| 25 | 11 24 | subcld |  |-  ( ( ph /\ x e. CC ) -> ( x - B ) e. CC ) | 
						
							| 26 |  | df-idp |  |-  Xp = ( _I |` CC ) | 
						
							| 27 |  | mptresid |  |-  ( _I |` CC ) = ( x e. CC |-> x ) | 
						
							| 28 | 26 27 | eqtri |  |-  Xp = ( x e. CC |-> x ) | 
						
							| 29 | 28 | a1i |  |-  ( ph -> Xp = ( x e. CC |-> x ) ) | 
						
							| 30 |  | fconstmpt |  |-  ( CC X. { B } ) = ( x e. CC |-> B ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( CC X. { B } ) = ( x e. CC |-> B ) ) | 
						
							| 32 | 13 11 24 29 31 | offval2 |  |-  ( ph -> ( Xp oF - ( CC X. { B } ) ) = ( x e. CC |-> ( x - B ) ) ) | 
						
							| 33 |  | eqidd |  |-  ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) | 
						
							| 34 |  | oveq1 |  |-  ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( y = ( x - B ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) | 
						
							| 36 | 35 | sumeq2sdv |  |-  ( y = ( x - B ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) | 
						
							| 37 | 25 32 33 36 | fmptco |  |-  ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) | 
						
							| 38 | 10 37 | eqtr4d |  |-  ( ph -> T = ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) | 
						
							| 39 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 40 | 39 | subrgss |  |-  ( D e. ( SubRing ` CCfld ) -> D C_ CC ) | 
						
							| 41 | 7 40 | syl |  |-  ( ph -> D C_ CC ) | 
						
							| 42 | 41 4 9 | elplyd |  |-  ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) ) | 
						
							| 43 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 44 | 43 | subrg1cl |  |-  ( D e. ( SubRing ` CCfld ) -> 1 e. D ) | 
						
							| 45 | 7 44 | syl |  |-  ( ph -> 1 e. D ) | 
						
							| 46 |  | plyid |  |-  ( ( D C_ CC /\ 1 e. D ) -> Xp e. ( Poly ` D ) ) | 
						
							| 47 | 41 45 46 | syl2anc |  |-  ( ph -> Xp e. ( Poly ` D ) ) | 
						
							| 48 |  | plyconst |  |-  ( ( D C_ CC /\ B e. D ) -> ( CC X. { B } ) e. ( Poly ` D ) ) | 
						
							| 49 | 41 8 48 | syl2anc |  |-  ( ph -> ( CC X. { B } ) e. ( Poly ` D ) ) | 
						
							| 50 |  | subrgsubg |  |-  ( D e. ( SubRing ` CCfld ) -> D e. ( SubGrp ` CCfld ) ) | 
						
							| 51 | 7 50 | syl |  |-  ( ph -> D e. ( SubGrp ` CCfld ) ) | 
						
							| 52 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 53 | 52 | subgcl |  |-  ( ( D e. ( SubGrp ` CCfld ) /\ u e. D /\ v e. D ) -> ( u + v ) e. D ) | 
						
							| 54 | 53 | 3expb |  |-  ( ( D e. ( SubGrp ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) | 
						
							| 55 | 51 54 | sylan |  |-  ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) | 
						
							| 56 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 57 | 56 | subrgmcl |  |-  ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> ( u x. v ) e. D ) | 
						
							| 58 | 57 | 3expb |  |-  ( ( D e. ( SubRing ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) | 
						
							| 59 | 7 58 | sylan |  |-  ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) | 
						
							| 60 |  | ax-1cn |  |-  1 e. CC | 
						
							| 61 |  | cnfldneg |  |-  ( 1 e. CC -> ( ( invg ` CCfld ) ` 1 ) = -u 1 ) | 
						
							| 62 | 60 61 | ax-mp |  |-  ( ( invg ` CCfld ) ` 1 ) = -u 1 | 
						
							| 63 |  | eqid |  |-  ( invg ` CCfld ) = ( invg ` CCfld ) | 
						
							| 64 | 63 | subginvcl |  |-  ( ( D e. ( SubGrp ` CCfld ) /\ 1 e. D ) -> ( ( invg ` CCfld ) ` 1 ) e. D ) | 
						
							| 65 | 51 45 64 | syl2anc |  |-  ( ph -> ( ( invg ` CCfld ) ` 1 ) e. D ) | 
						
							| 66 | 62 65 | eqeltrrid |  |-  ( ph -> -u 1 e. D ) | 
						
							| 67 | 47 49 55 59 66 | plysub |  |-  ( ph -> ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` D ) ) | 
						
							| 68 | 42 67 55 59 | plyco |  |-  ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) e. ( Poly ` D ) ) | 
						
							| 69 | 38 68 | eqeltrd |  |-  ( ph -> T e. ( Poly ` D ) ) | 
						
							| 70 | 38 | fveq2d |  |-  ( ph -> ( deg ` T ) = ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) ) | 
						
							| 71 |  | eqid |  |-  ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) | 
						
							| 72 |  | eqid |  |-  ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = ( deg ` ( Xp oF - ( CC X. { B } ) ) ) | 
						
							| 73 | 71 72 42 67 | dgrco |  |-  ( ph -> ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) ) | 
						
							| 74 |  | eqid |  |-  ( Xp oF - ( CC X. { B } ) ) = ( Xp oF - ( CC X. { B } ) ) | 
						
							| 75 | 74 | plyremlem |  |-  ( B e. CC -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) | 
						
							| 76 | 23 75 | syl |  |-  ( ph -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) | 
						
							| 77 | 76 | simp2d |  |-  ( ph -> ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 ) | 
						
							| 78 | 77 | oveq2d |  |-  ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) ) | 
						
							| 79 |  | dgrcl |  |-  ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) | 
						
							| 80 | 42 79 | syl |  |-  ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) | 
						
							| 81 | 80 | nn0cnd |  |-  ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. CC ) | 
						
							| 82 | 81 | mulridd |  |-  ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) | 
						
							| 83 | 78 82 | eqtrd |  |-  ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) | 
						
							| 84 | 70 73 83 | 3eqtrd |  |-  ( ph -> ( deg ` T ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) | 
						
							| 85 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> S e. { RR , CC } ) | 
						
							| 86 | 15 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 87 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 89 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 90 | 85 86 88 89 | syl3anc |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 91 |  | simpr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... N ) ) | 
						
							| 92 |  | dvn2bss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) | 
						
							| 93 | 85 86 91 92 | syl3anc |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) | 
						
							| 94 | 5 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 95 | 93 94 | sseldd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 96 | 90 95 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) | 
						
							| 97 | 88 | faccld |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) | 
						
							| 98 | 97 | nncnd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. CC ) | 
						
							| 99 | 97 | nnne0d |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) =/= 0 ) | 
						
							| 100 | 96 98 99 | divcld |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 101 | 42 4 100 33 | dgrle |  |-  ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) <_ N ) | 
						
							| 102 | 84 101 | eqbrtrd |  |-  ( ph -> ( deg ` T ) <_ N ) | 
						
							| 103 | 69 102 | jca |  |-  ( ph -> ( T e. ( Poly ` D ) /\ ( deg ` T ) <_ N ) ) |