Step |
Hyp |
Ref |
Expression |
1 |
|
trlcoabs.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlcoabs.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlcoabs.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
trlcoabs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
trlcoabs.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
trlcoabs.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
10 |
4 5
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
12 |
4 5
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
13 |
7 8 11 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
14 |
1 3 4 5
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
15 |
14
|
3adant2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
17 |
1 2 16 3 4 5 6
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
18 |
7 13 15 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
19 |
18
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
20 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
21 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
22 |
1 3 4 5
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
23 |
7 9 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
24 |
1 3 4 5
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) |
25 |
7 13 23 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
27 |
26 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
20 23 25 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
30 |
26 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
32 |
1 2 3
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
33 |
20 23 25 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
34 |
26 1 2 16 3
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) ) ) |
35 |
20 23 28 31 33 34
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) ) ) |
36 |
1 3 4 5
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
37 |
7 13 9 21 36
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
38 |
|
coass |
⊢ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
39 |
26 4 5
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
40 |
7 9 39
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
41 |
|
f1ococnv1 |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
42 |
40 41
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
43 |
42
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( 𝐺 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
44 |
26 4 5
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
45 |
7 8 44
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
46 |
|
f1of |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
47 |
|
fcoi1 |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( 𝐺 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐺 ) |
48 |
45 46 47
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐺 ) |
49 |
43 48
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = 𝐺 ) |
50 |
38 49
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = 𝐺 ) |
51 |
50
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
52 |
37 51
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) = ( 𝐺 ‘ 𝑃 ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
54 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
55 |
1 2 54 3 4
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
56 |
7 15 55
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
57 |
53 56
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) |
58 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
59 |
20 58
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
60 |
1 3 4 5
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
61 |
7 8 21 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
62 |
26 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
20 23 61 62
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
26 16 54
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
65 |
59 63 64
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
66 |
57 65
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑊 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
67 |
19 35 66
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ) |