Metamath Proof Explorer


Theorem xpord3inddlem

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
xpord3inddlem.x ( 𝜅𝑋𝐴 )
xpord3inddlem.y ( 𝜅𝑌𝐵 )
xpord3inddlem.z ( 𝜅𝑍𝐶 )
xpord3inddlem.1 ( 𝜅𝑅 Fr 𝐴 )
xpord3inddlem.2 ( 𝜅𝑅 Po 𝐴 )
xpord3inddlem.3 ( 𝜅𝑅 Se 𝐴 )
xpord3inddlem.4 ( 𝜅𝑆 Fr 𝐵 )
xpord3inddlem.5 ( 𝜅𝑆 Po 𝐵 )
xpord3inddlem.6 ( 𝜅𝑆 Se 𝐵 )
xpord3inddlem.7 ( 𝜅𝑇 Fr 𝐶 )
xpord3inddlem.8 ( 𝜅𝑇 Po 𝐶 )
xpord3inddlem.9 ( 𝜅𝑇 Se 𝐶 )
xpord3inddlem.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
xpord3inddlem.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
xpord3inddlem.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
xpord3inddlem.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
xpord3inddlem.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
xpord3inddlem.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
xpord3inddlem.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
xpord3inddlem.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
xpord3inddlem.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
xpord3inddlem.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
xpord3inddlem.i ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
Assertion xpord3inddlem ( 𝜅𝜆 )

Proof

Step Hyp Ref Expression
1 xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
2 xpord3inddlem.x ( 𝜅𝑋𝐴 )
3 xpord3inddlem.y ( 𝜅𝑌𝐵 )
4 xpord3inddlem.z ( 𝜅𝑍𝐶 )
5 xpord3inddlem.1 ( 𝜅𝑅 Fr 𝐴 )
6 xpord3inddlem.2 ( 𝜅𝑅 Po 𝐴 )
7 xpord3inddlem.3 ( 𝜅𝑅 Se 𝐴 )
8 xpord3inddlem.4 ( 𝜅𝑆 Fr 𝐵 )
9 xpord3inddlem.5 ( 𝜅𝑆 Po 𝐵 )
10 xpord3inddlem.6 ( 𝜅𝑆 Se 𝐵 )
11 xpord3inddlem.7 ( 𝜅𝑇 Fr 𝐶 )
12 xpord3inddlem.8 ( 𝜅𝑇 Po 𝐶 )
13 xpord3inddlem.9 ( 𝜅𝑇 Se 𝐶 )
14 xpord3inddlem.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
15 xpord3inddlem.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
16 xpord3inddlem.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
17 xpord3inddlem.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
18 xpord3inddlem.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
19 xpord3inddlem.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
20 xpord3inddlem.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
21 xpord3inddlem.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
22 xpord3inddlem.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
23 xpord3inddlem.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
24 xpord3inddlem.i ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
25 1 5 8 11 frxp3 ( 𝜅𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
26 1 6 9 12 poxp3 ( 𝜅𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
27 1 7 10 13 sexp3 ( 𝜅𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
28 bi2.04 ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → ( 𝜅𝜃 ) ) ↔ ( 𝜅 → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
29 28 3albii ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → ( 𝜅𝜃 ) ) ↔ ∀ 𝑑𝑒𝑓 ( 𝜅 → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
30 19.21v ( ∀ 𝑓 ( 𝜅 → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
31 30 2albii ( ∀ 𝑑𝑒𝑓 ( 𝜅 → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ∀ 𝑑𝑒 ( 𝜅 → ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
32 19.21v ( ∀ 𝑒 ( 𝜅 → ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
33 32 albii ( ∀ 𝑑𝑒 ( 𝜅 → ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ∀ 𝑑 ( 𝜅 → ∀ 𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
34 19.21v ( ∀ 𝑑 ( 𝜅 → ∀ 𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
35 33 34 bitri ( ∀ 𝑑𝑒 ( 𝜅 → ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
36 31 35 bitri ( ∀ 𝑑𝑒𝑓 ( 𝜅 → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
37 29 36 bitri ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → ( 𝜅𝜃 ) ) ↔ ( 𝜅 → ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) )
38 1 xpord3pred ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) )
39 38 adantl ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) )
40 39 eleq2d ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) ↔ ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) ) )
41 40 imbi1d ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) → 𝜃 ) ) )
42 eldifsn ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) ↔ ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ≠ ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) )
43 otelxp ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ↔ ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) )
44 vex 𝑑 ∈ V
45 vex 𝑒 ∈ V
46 vex 𝑓 ∈ V
47 44 45 46 otthne ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ≠ ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ↔ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) )
48 43 47 anbi12i ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ≠ ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) )
49 42 48 bitri ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) )
50 49 imbi1i ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ } ) → 𝜃 ) ↔ ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) → 𝜃 ) )
51 41 50 bitrdi ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) → 𝜃 ) ) )
52 impexp ( ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) → 𝜃 ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
53 51 52 bitrdi ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
54 53 albidv ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
55 54 2albidv ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑑𝑒𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
56 r3al ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑𝑒𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
57 56 bicomi ( ∀ 𝑑𝑒𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ↔ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
58 55 57 bitrdi ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
59 ssun1 Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } )
60 ssralv ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) → ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
61 59 60 ax-mp ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
62 61 ralimi ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
63 ssun1 Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } )
64 ssralv ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
65 63 64 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
66 62 65 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
67 66 ralimi ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
68 ssun1 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } )
69 ssralv ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
70 68 69 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
71 67 70 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
72 71 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
73 predpoirr ( 𝑇 Po 𝐶 → ¬ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) )
74 12 73 syl ( 𝜅 → ¬ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) )
75 eleq1 ( 𝑓 = 𝑐 → ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ↔ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) )
76 75 notbid ( 𝑓 = 𝑐 → ( ¬ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ↔ ¬ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) )
77 74 76 syl5ibrcom ( 𝜅 → ( 𝑓 = 𝑐 → ¬ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) )
78 77 necon2ad ( 𝜅 → ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → 𝑓𝑐 ) )
79 78 imp ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → 𝑓𝑐 )
80 79 3mix3d ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) )
81 pm2.27 ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜃 ) )
82 80 81 syl ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜃 ) )
83 82 ralimdva ( 𝜅 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ) )
84 83 ralimdv ( 𝜅 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ) )
85 84 ralimdv ( 𝜅 → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ) )
86 85 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ) )
87 72 86 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 )
88 ssun2 { 𝑐 } ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } )
89 ssralv ( { 𝑐 } ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) → ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
90 88 89 ax-mp ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
91 90 ralimi ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
92 ssralv ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
93 63 92 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
94 91 93 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
95 94 ralimi ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
96 ssralv ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
97 68 96 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
98 95 97 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
99 vex 𝑐 ∈ V
100 biidd ( 𝑓 = 𝑐 → ( 𝑑𝑎𝑑𝑎 ) )
101 biidd ( 𝑓 = 𝑐 → ( 𝑒𝑏𝑒𝑏 ) )
102 neeq1 ( 𝑓 = 𝑐 → ( 𝑓𝑐𝑐𝑐 ) )
103 100 101 102 3orbi123d ( 𝑓 = 𝑐 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) ) )
104 16 equcoms ( 𝑓 = 𝑐 → ( 𝜒𝜃 ) )
105 104 bicomd ( 𝑓 = 𝑐 → ( 𝜃𝜒 ) )
106 103 105 imbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ) )
107 99 106 ralsn ( ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
108 107 2ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
109 98 108 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
110 109 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
111 predpoirr ( 𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) )
112 9 111 syl ( 𝜅 → ¬ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) )
113 eleq1 ( 𝑒 = 𝑏 → ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) )
114 113 notbid ( 𝑒 = 𝑏 → ( ¬ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ ¬ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) )
115 112 114 syl5ibrcom ( 𝜅 → ( 𝑒 = 𝑏 → ¬ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) )
116 115 necon2ad ( 𝜅 → ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → 𝑒𝑏 ) )
117 116 imp ( ( 𝜅𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) → 𝑒𝑏 )
118 117 3mix2d ( ( 𝜅𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) → ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) )
119 pm2.27 ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → 𝜒 ) )
120 118 119 syl ( ( 𝜅𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → 𝜒 ) )
121 120 ralimdva ( 𝜅 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ) )
122 121 ralimdv ( 𝜅 → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ) )
123 122 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ) )
124 110 123 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 )
125 ssun2 { 𝑏 } ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } )
126 ssralv ( { 𝑏 } ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
127 125 126 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
128 62 127 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
129 128 ralimi ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
130 ssralv ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
131 68 130 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
132 129 131 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
133 vex 𝑏 ∈ V
134 biidd ( 𝑒 = 𝑏 → ( 𝑑𝑎𝑑𝑎 ) )
135 neeq1 ( 𝑒 = 𝑏 → ( 𝑒𝑏𝑏𝑏 ) )
136 biidd ( 𝑒 = 𝑏 → ( 𝑓𝑐𝑓𝑐 ) )
137 134 135 136 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) ) )
138 19 equcoms ( 𝑒 = 𝑏 → ( 𝜁𝜃 ) )
139 138 bicomd ( 𝑒 = 𝑏 → ( 𝜃𝜁 ) )
140 137 139 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) ) )
141 140 ralbidv ( 𝑒 = 𝑏 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) ) )
142 133 141 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
143 142 ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
144 132 143 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
145 144 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
146 79 3mix3d ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) )
147 pm2.27 ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → 𝜁 ) )
148 146 147 syl ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → 𝜁 ) )
149 148 ralimdva ( 𝜅 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) )
150 149 ralimdv ( 𝜅 → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) )
151 150 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) )
152 145 151 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 )
153 87 124 152 3jca ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) )
154 ssralv ( { 𝑏 } ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
155 125 154 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
156 91 155 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
157 156 ralimi ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
158 ssralv ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
159 68 158 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
160 157 159 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
161 107 ralbii ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
162 biidd ( 𝑒 = 𝑏 → ( 𝑐𝑐𝑐𝑐 ) )
163 134 135 162 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) ↔ ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) ) )
164 15 equcoms ( 𝑒 = 𝑏 → ( 𝜓𝜒 ) )
165 164 bicomd ( 𝑒 = 𝑏 → ( 𝜒𝜓 ) )
166 163 165 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) ) )
167 133 166 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
168 161 167 bitri ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
169 168 ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
170 160 169 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
171 170 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
172 predpoirr ( 𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) )
173 6 172 syl ( 𝜅 → ¬ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) )
174 eleq1 ( 𝑑 = 𝑎 → ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) )
175 174 notbid ( 𝑑 = 𝑎 → ( ¬ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ ¬ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) )
176 173 175 syl5ibrcom ( 𝜅 → ( 𝑑 = 𝑎 → ¬ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) )
177 176 necon2ad ( 𝜅 → ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) → 𝑑𝑎 ) )
178 177 imp ( ( 𝜅𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) → 𝑑𝑎 )
179 178 3mix1d ( ( 𝜅𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) → ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) )
180 pm2.27 ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → 𝜓 ) )
181 179 180 syl ( ( 𝜅𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) → ( ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → 𝜓 ) )
182 181 ralimdva ( 𝜅 → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ) )
183 182 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ) )
184 171 183 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 )
185 ssun2 { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } )
186 ssralv ( { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
187 185 186 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
188 67 187 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
189 vex 𝑎 ∈ V
190 neeq1 ( 𝑑 = 𝑎 → ( 𝑑𝑎𝑎𝑎 ) )
191 biidd ( 𝑑 = 𝑎 → ( 𝑒𝑏𝑒𝑏 ) )
192 biidd ( 𝑑 = 𝑎 → ( 𝑓𝑐𝑓𝑐 ) )
193 190 191 192 3orbi123d ( 𝑑 = 𝑎 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ) )
194 17 equcoms ( 𝑑 = 𝑎 → ( 𝜏𝜃 ) )
195 194 bicomd ( 𝑑 = 𝑎 → ( 𝜃𝜏 ) )
196 193 195 imbi12d ( 𝑑 = 𝑎 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
197 196 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
198 189 197 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
199 188 198 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
200 199 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
201 79 3mix3d ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) )
202 pm2.27 ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → 𝜏 ) )
203 201 202 syl ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → 𝜏 ) )
204 203 ralimdva ( 𝜅 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ) )
205 204 ralimdv ( 𝜅 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ) )
206 205 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ) )
207 200 206 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 )
208 ssralv ( { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
209 185 208 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
210 95 209 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
211 196 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
212 189 211 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
213 biidd ( 𝑓 = 𝑐 → ( 𝑎𝑎𝑎𝑎 ) )
214 213 101 102 3orbi123d ( 𝑓 = 𝑐 → ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) ) )
215 20 bicomd ( 𝑐 = 𝑓 → ( 𝜏𝜎 ) )
216 215 equcoms ( 𝑓 = 𝑐 → ( 𝜏𝜎 ) )
217 214 216 imbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) ) )
218 99 217 ralsn ( ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
219 218 ralbii ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
220 212 219 bitri ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
221 210 220 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
222 221 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
223 117 3mix2d ( ( 𝜅𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) → ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) )
224 pm2.27 ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → 𝜎 ) )
225 223 224 syl ( ( 𝜅𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) → ( ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → 𝜎 ) )
226 225 ralimdva ( 𝜅 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) )
227 226 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) )
228 222 227 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 )
229 184 207 228 3jca ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) )
230 ssralv ( { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
231 185 230 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
232 129 231 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
233 196 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
234 189 233 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
235 biidd ( 𝑒 = 𝑏 → ( 𝑎𝑎𝑎𝑎 ) )
236 235 135 136 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) ) )
237 equcomi ( 𝑒 = 𝑏𝑏 = 𝑒 )
238 bicom1 ( ( 𝜂𝜏 ) → ( 𝜏𝜂 ) )
239 237 18 238 3syl ( 𝑒 = 𝑏 → ( 𝜏𝜂 ) )
240 236 239 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) ) )
241 240 ralbidv ( 𝑒 = 𝑏 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) ) )
242 133 241 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
243 234 242 bitri ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
244 232 243 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
245 244 adantl ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
246 79 3mix3d ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) )
247 pm2.27 ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → ( ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → 𝜂 ) )
248 246 247 syl ( ( 𝜅𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) → ( ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → 𝜂 ) )
249 248 ralimdva ( 𝜅 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) )
250 249 adantr ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) )
251 245 250 mpd ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 )
252 153 229 251 3jca ( ( 𝜅 ∧ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) → ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) )
253 252 ex ( 𝜅 → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) ) )
254 253 adantr ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) ) )
255 254 24 syld ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜑 ) )
256 58 255 sylbid ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) → 𝜑 ) )
257 256 expcom ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( 𝜅 → ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) → 𝜑 ) ) )
258 257 a2d ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( 𝜅 → ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → 𝜃 ) ) → ( 𝜅𝜑 ) ) )
259 37 258 biimtrid ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → ( 𝜅𝜃 ) ) → ( 𝜅𝜑 ) ) )
260 14 imbi2d ( 𝑎 = 𝑑 → ( ( 𝜅𝜑 ) ↔ ( 𝜅𝜓 ) ) )
261 15 imbi2d ( 𝑏 = 𝑒 → ( ( 𝜅𝜓 ) ↔ ( 𝜅𝜒 ) ) )
262 16 imbi2d ( 𝑐 = 𝑓 → ( ( 𝜅𝜒 ) ↔ ( 𝜅𝜃 ) ) )
263 21 imbi2d ( 𝑎 = 𝑋 → ( ( 𝜅𝜑 ) ↔ ( 𝜅𝜌 ) ) )
264 22 imbi2d ( 𝑏 = 𝑌 → ( ( 𝜅𝜌 ) ↔ ( 𝜅𝜇 ) ) )
265 23 imbi2d ( 𝑐 = 𝑍 → ( ( 𝜅𝜇 ) ↔ ( 𝜅𝜆 ) ) )
266 259 260 261 262 263 264 265 frpoins3xp3g ( ( ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ∧ ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) ) → ( 𝜅𝜆 ) )
267 25 26 27 2 3 4 266 syl33anc ( 𝜅 → ( 𝜅𝜆 ) )
268 267 pm2.43i ( 𝜅𝜆 )