Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpnlem1 | Unicode version |
Description: Lemma for infpn 14430. The smallest divisor (greater than 1)
of
N 1 is a
prime greater than . (Contributed by NM,
5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 |
Ref | Expression |
---|---|
infpnlem1 |
N
,M
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 10568 | . . . . . . . 8 | |
2 | nnre 10568 | . . . . . . . 8 | |
3 | lenlt 9684 | . . . . . . . 8 | |
4 | 1, 2, 3 | syl2anr 478 | . . . . . . 7 |
5 | 4 | adantr 465 | . . . . . 6 |
6 | nnnn0 10827 | . . . . . . . 8 | |
7 | facndiv 12366 | . . . . . . . . 9 | |
8 | infpnlem.1 | . . . . . . . . . . 11 | |
9 | 8 | oveq1i 6306 | . . . . . . . . . 10 |
10 | nnz 10911 | . . . . . . . . . 10 | |
11 | 9, 10 | syl5eqelr 2550 | . . . . . . . . 9 |
12 | 7, 11 | nsyl 121 | . . . . . . . 8 |
13 | 6, 12 | sylanl1 650 | . . . . . . 7 |
14 | 13 | expr 615 | . . . . . 6 |
15 | 5, 14 | sylbird 235 | . . . . 5 |
16 | 15 | con4d 105 | . . . 4 |
17 | 16 | expimpd 603 | . . 3 |
18 | 17 | adantrd 468 | . 2 |
19 | faccl 12363 | . . . . . . . . . . . . . . . . . . . . . 22 | |
20 | 6, 19 | syl 16 | . . . . . . . . . . . . . . . . . . . . 21 |
21 | 20 | peano2nnd 10578 | . . . . . . . . . . . . . . . . . . . 20 |
22 | 8, 21 | syl5eqel 2549 | . . . . . . . . . . . . . . . . . . 19 |
23 | 22 | nncnd 10577 | . . . . . . . . . . . . . . . . . 18 |
24 | nndivtr 10602 | . . . . . . . . . . . . . . . . . . . . 21 | |
25 | 24 | ex 434 | . . . . . . . . . . . . . . . . . . . 20 |
26 | 25 | 3com13 1201 | . . . . . . . . . . . . . . . . . . 19 |
27 | 26 | 3expa 1196 | . . . . . . . . . . . . . . . . . 18 |
28 | 23, 27 | sylanl1 650 | . . . . . . . . . . . . . . . . 17 |
29 | 28 | adantrl 715 | . . . . . . . . . . . . . . . 16 |
30 | nnre 10568 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
31 | letri3 9691 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
32 | 30, 1, 31 | syl2an 477 | . . . . . . . . . . . . . . . . . . . . . . 23 |
33 | 32 | biimprd 223 | . . . . . . . . . . . . . . . . . . . . . 22 |
34 | 33 | exp4b 607 | . . . . . . . . . . . . . . . . . . . . 21 |
35 | 34 | com3l 81 | . . . . . . . . . . . . . . . . . . . 20 |
36 | 35 | imp32 433 | . . . . . . . . . . . . . . . . . . 19 |
37 | 36 | adantll 713 | . . . . . . . . . . . . . . . . . 18 |
38 | 37 | imim2d 52 | . . . . . . . . . . . . . . . . 17 |
39 | 38 | com23 78 | . . . . . . . . . . . . . . . 16 |
40 | 29, 39 | sylan2d 482 | . . . . . . . . . . . . . . 15 |
41 | 40 | exp4d 609 | . . . . . . . . . . . . . 14 |
42 | 41 | com24 87 | . . . . . . . . . . . . 13 |
43 | 42 | exp32 605 | . . . . . . . . . . . 12 |
44 | 43 | com24 87 | . . . . . . . . . . 11 |
45 | 44 | imp31 432 | . . . . . . . . . 10 |
46 | 45 | com14 88 | . . . . . . . . 9 |
47 | 46 | 3imp 1190 | . . . . . . . 8 |
48 | 47 | com3l 81 | . . . . . . 7 |
49 | 48 | ralimdva 2865 | . . . . . 6 |
50 | 49 | ex 434 | . . . . 5 |
51 | 50 | adantld 467 | . . . 4 |
52 | 51 | impd 431 | . . 3 |
53 | prime 10968 | . . . 4 | |
54 | 53 | adantl 466 | . . 3 |
55 | 52, 54 | sylibrd 234 | . 2 |
56 | 18, 55 | jcad 533 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 1 c1 9514 caddc 9516 clt 9649 cle 9650 cdiv 10231 cn 10561 cn0 10820
cz 10889 cfa 12353 |
This theorem is referenced by: infpnlem2 14429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-fac 12354 |
Copyright terms: Public domain | W3C validator |