Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxub | Unicode version |
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ixx.1 | |
ixxub.2 | |
ixxub.3 | |
ixxub.4 | |
ixxub.5 |
Ref | Expression |
---|---|
ixxub |
O
,,,, ,,, ,S
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixx.1 | . . . . . . . . 9 | |
2 | 1 | elixx1 11567 | . . . . . . . 8 |
3 | 2 | 3adant3 1016 | . . . . . . 7 |
4 | 3 | biimpa 484 | . . . . . 6 |
5 | 4 | simp3d 1010 | . . . . 5 |
6 | 4 | simp1d 1008 | . . . . . 6 |
7 | simp2 997 | . . . . . . 7 | |
8 | 7 | adantr 465 | . . . . . 6 |
9 | ixxub.3 | . . . . . 6 | |
10 | 6, 8, 9 | syl2anc 661 | . . . . 5 |
11 | 5, 10 | mpd 15 | . . . 4 |
12 | 11 | ralrimiva 2871 | . . 3 |
13 | 6 | ex 434 | . . . . 5 |
14 | 13 | ssrdv 3509 | . . . 4 |
15 | supxrleub 11547 | . . . 4 | |
16 | 14, 7, 15 | syl2anc 661 | . . 3 |
17 | 12, 16 | mpbird 232 | . 2 |
18 | simprl 756 | . . . . . 6 | |
19 | 14 | ad2antrr 725 | . . . . . . . 8 |
20 | qre 11216 | . . . . . . . . . . 11 | |
21 | 20 | rexrd 9664 | . . . . . . . . . 10 |
22 | 21 | ad2antlr 726 | . . . . . . . . 9 |
23 | simp1 996 | . . . . . . . . . . . 12 | |
24 | 23 | ad2antrr 725 | . . . . . . . . . . 11 |
25 | supxrcl 11535 | . . . . . . . . . . . . 13 | |
26 | 14, 25 | syl 16 | . . . . . . . . . . . 12 |
27 | 26 | ad2antrr 725 | . . . . . . . . . . 11 |
28 | simp3 998 | . . . . . . . . . . . . . 14 | |
29 | n0 3794 | . . . . . . . . . . . . . 14 | |
30 | 28, 29 | sylib 196 | . . . . . . . . . . . . 13 |
31 | 23 | adantr 465 | . . . . . . . . . . . . . 14 |
32 | 26 | adantr 465 | . . . . . . . . . . . . . 14 |
33 | 4 | simp2d 1009 | . . . . . . . . . . . . . . 15 |
34 | ixxub.5 | . . . . . . . . . . . . . . . 16 | |
35 | 31, 6, 34 | syl2anc 661 | . . . . . . . . . . . . . . 15 |
36 | 33, 35 | mpd 15 | . . . . . . . . . . . . . 14 |
37 | supxrub 11545 | . . . . . . . . . . . . . . 15 | |
38 | 14, 37 | sylan 471 | . . . . . . . . . . . . . 14 |
39 | 31, 6, 32, 36, 38 | xrletrd 11394 | . . . . . . . . . . . . 13 |
40 | 30, 39 | exlimddv 1726 | . . . . . . . . . . . 12 |
41 | 40 | ad2antrr 725 | . . . . . . . . . . 11 |
42 | 24, 27, 22, 41, 18 | xrlelttrd 11392 | . . . . . . . . . 10 |
43 | ixxub.4 | . . . . . . . . . . 11 | |
44 | 24, 22, 43 | syl2anc 661 | . . . . . . . . . 10 |
45 | 42, 44 | mpd 15 | . . . . . . . . 9 |
46 | simprr 757 | . . . . . . . . . 10 | |
47 | 7 | ad2antrr 725 | . . . . . . . . . . 11 |
48 | ixxub.2 | . . . . . . . . . . 11 | |
49 | 22, 47, 48 | syl2anc 661 | . . . . . . . . . 10 |
50 | 46, 49 | mpd 15 | . . . . . . . . 9 |
51 | 3 | ad2antrr 725 | . . . . . . . . 9 |
52 | 22, 45, 50, 51 | mpbir3and 1179 | . . . . . . . 8 |
53 | 19, 52, 37 | syl2anc 661 | . . . . . . 7 |
54 | xrlenlt 9673 | . . . . . . . 8 | |
55 | 22, 27, 54 | syl2anc 661 | . . . . . . 7 |
56 | 53, 55 | mpbid 210 | . . . . . 6 |
57 | 18, 56 | pm2.65da 576 | . . . . 5 |
58 | 57 | nrexdv 2913 | . . . 4 |
59 | qbtwnxr 11428 | . . . . . 6 | |
60 | 59 | 3expia 1198 | . . . . 5 |
61 | 26, 7, 60 | syl2anc 661 | . . . 4 |
62 | 58, 61 | mtod 177 | . . 3 |
63 | xrlenlt 9673 | . . . 4 | |
64 | 7, 26, 63 | syl2anc 661 | . . 3 |
65 | 62, 64 | mpbird 232 | . 2 |
66 | xrletri3 11387 | . . 3 | |
67 | 26, 7, 66 | syl2anc 661 | . 2 |
68 | 17, 65, 67 | mpbir2and 922 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
{ crab 2811 C_ wss 3475 c0 3784 class class class wbr 4452
(class class class)co 6296 e. cmpt2 6298 sup csup 7920
cxr 9648
clt 9649 cle 9650 cq 11211 |
This theorem is referenced by: ioopnfsup 11991 icopnfsup 11992 bndth 21458 ioorf 21982 ioorinv2 21984 ioossioobi 31557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 |
Copyright terms: Public domain | W3C validator |