| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrexch.b |
|- B = ( Base ` K ) |
| 2 |
|
cvrexch.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cvrexch.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cvrexch.c |
|- C = ( |
| 5 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 6 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 7 |
5 6
|
syl3an1 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 8 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
| 9 |
1 8 4
|
cvrlt |
|- ( ( ( K e. HL /\ ( X ./\ Y ) e. B /\ Y e. B ) /\ ( X ./\ Y ) C Y ) -> ( X ./\ Y ) ( lt ` K ) Y ) |
| 10 |
9
|
ex |
|- ( ( K e. HL /\ ( X ./\ Y ) e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y -> ( X ./\ Y ) ( lt ` K ) Y ) ) |
| 11 |
7 10
|
syld3an2 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y -> ( X ./\ Y ) ( lt ` K ) Y ) ) |
| 12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 13 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 14 |
1 12 8 13
|
hlrelat1 |
|- ( ( K e. HL /\ ( X ./\ Y ) e. B /\ Y e. B ) -> ( ( X ./\ Y ) ( lt ` K ) Y -> E. p e. ( Atoms ` K ) ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) |
| 15 |
7 14
|
syld3an2 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) ( lt ` K ) Y -> E. p e. ( Atoms ` K ) ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) |
| 16 |
11 15
|
syld |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y -> E. p e. ( Atoms ` K ) ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) |
| 17 |
16
|
imp |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( X ./\ Y ) C Y ) -> E. p e. ( Atoms ` K ) ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) |
| 18 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> K e. HL ) |
| 19 |
18
|
hllatd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> K e. Lat ) |
| 20 |
1 13
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. B ) |
| 21 |
20
|
adantl |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> p e. B ) |
| 22 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> X e. B ) |
| 23 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> Y e. B ) |
| 24 |
1 12 3
|
latlem12 |
|- ( ( K e. Lat /\ ( p e. B /\ X e. B /\ Y e. B ) ) -> ( ( p ( le ` K ) X /\ p ( le ` K ) Y ) <-> p ( le ` K ) ( X ./\ Y ) ) ) |
| 25 |
19 21 22 23 24
|
syl13anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( ( p ( le ` K ) X /\ p ( le ` K ) Y ) <-> p ( le ` K ) ( X ./\ Y ) ) ) |
| 26 |
25
|
biimpd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( ( p ( le ` K ) X /\ p ( le ` K ) Y ) -> p ( le ` K ) ( X ./\ Y ) ) ) |
| 27 |
26
|
expcomd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( p ( le ` K ) Y -> ( p ( le ` K ) X -> p ( le ` K ) ( X ./\ Y ) ) ) ) |
| 28 |
|
con3 |
|- ( ( p ( le ` K ) X -> p ( le ` K ) ( X ./\ Y ) ) -> ( -. p ( le ` K ) ( X ./\ Y ) -> -. p ( le ` K ) X ) ) |
| 29 |
27 28
|
syl6 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( p ( le ` K ) Y -> ( -. p ( le ` K ) ( X ./\ Y ) -> -. p ( le ` K ) X ) ) ) |
| 30 |
29
|
com23 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( -. p ( le ` K ) ( X ./\ Y ) -> ( p ( le ` K ) Y -> -. p ( le ` K ) X ) ) ) |
| 31 |
30
|
a1d |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( ( X ./\ Y ) C Y -> ( -. p ( le ` K ) ( X ./\ Y ) -> ( p ( le ` K ) Y -> -. p ( le ` K ) X ) ) ) ) |
| 32 |
31
|
imp4d |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) -> -. p ( le ` K ) X ) ) |
| 33 |
|
simpr |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> p e. ( Atoms ` K ) ) |
| 34 |
1 12 2 4 13
|
cvr1 |
|- ( ( K e. HL /\ X e. B /\ p e. ( Atoms ` K ) ) -> ( -. p ( le ` K ) X <-> X C ( X .\/ p ) ) ) |
| 35 |
18 22 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( -. p ( le ` K ) X <-> X C ( X .\/ p ) ) ) |
| 36 |
32 35
|
sylibd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) -> ( ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) -> X C ( X .\/ p ) ) ) |
| 37 |
36
|
imp |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> X C ( X .\/ p ) ) |
| 38 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> K e. HL ) |
| 39 |
38
|
hllatd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> K e. Lat ) |
| 40 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> X e. B ) |
| 41 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> Y e. B ) |
| 42 |
39 40 41 6
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( X ./\ Y ) e. B ) |
| 43 |
|
simpr |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> p e. B ) |
| 44 |
1 2
|
latjass |
|- ( ( K e. Lat /\ ( X e. B /\ ( X ./\ Y ) e. B /\ p e. B ) ) -> ( ( X .\/ ( X ./\ Y ) ) .\/ p ) = ( X .\/ ( ( X ./\ Y ) .\/ p ) ) ) |
| 45 |
39 40 42 43 44
|
syl13anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X .\/ ( X ./\ Y ) ) .\/ p ) = ( X .\/ ( ( X ./\ Y ) .\/ p ) ) ) |
| 46 |
1 2 3
|
latabs1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |
| 47 |
5 46
|
syl3an1 |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |
| 48 |
47
|
adantr |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |
| 49 |
48
|
oveq1d |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X .\/ ( X ./\ Y ) ) .\/ p ) = ( X .\/ p ) ) |
| 50 |
45 49
|
eqtr3d |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( X .\/ ( ( X ./\ Y ) .\/ p ) ) = ( X .\/ p ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> ( X .\/ ( ( X ./\ Y ) .\/ p ) ) = ( X .\/ p ) ) |
| 52 |
1 12 8 2
|
latnle |
|- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ p e. B ) -> ( -. p ( le ` K ) ( X ./\ Y ) <-> ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) ) ) |
| 53 |
39 42 43 52
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( -. p ( le ` K ) ( X ./\ Y ) <-> ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) ) ) |
| 54 |
1 12 3
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) ( le ` K ) Y ) |
| 55 |
39 40 41 54
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( X ./\ Y ) ( le ` K ) Y ) |
| 56 |
55
|
biantrurd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( p ( le ` K ) Y <-> ( ( X ./\ Y ) ( le ` K ) Y /\ p ( le ` K ) Y ) ) ) |
| 57 |
1 12 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( X ./\ Y ) e. B /\ p e. B /\ Y e. B ) ) -> ( ( ( X ./\ Y ) ( le ` K ) Y /\ p ( le ` K ) Y ) <-> ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) ) |
| 58 |
39 42 43 41 57
|
syl13anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( ( X ./\ Y ) ( le ` K ) Y /\ p ( le ` K ) Y ) <-> ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) ) |
| 59 |
56 58
|
bitrd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( p ( le ` K ) Y <-> ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) ) |
| 60 |
53 59
|
anbi12d |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) <-> ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) ) ) |
| 61 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 62 |
38 61
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> K e. Poset ) |
| 63 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ p e. B ) -> ( ( X ./\ Y ) .\/ p ) e. B ) |
| 64 |
39 42 43 63
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X ./\ Y ) .\/ p ) e. B ) |
| 65 |
42 41 64
|
3jca |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X ./\ Y ) e. B /\ Y e. B /\ ( ( X ./\ Y ) .\/ p ) e. B ) ) |
| 66 |
1 12 8 4
|
cvrnbtwn2 |
|- ( ( K e. Poset /\ ( ( X ./\ Y ) e. B /\ Y e. B /\ ( ( X ./\ Y ) .\/ p ) e. B ) /\ ( X ./\ Y ) C Y ) -> ( ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) <-> ( ( X ./\ Y ) .\/ p ) = Y ) ) |
| 67 |
66
|
biimpd |
|- ( ( K e. Poset /\ ( ( X ./\ Y ) e. B /\ Y e. B /\ ( ( X ./\ Y ) .\/ p ) e. B ) /\ ( X ./\ Y ) C Y ) -> ( ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) -> ( ( X ./\ Y ) .\/ p ) = Y ) ) |
| 68 |
67
|
3exp |
|- ( K e. Poset -> ( ( ( X ./\ Y ) e. B /\ Y e. B /\ ( ( X ./\ Y ) .\/ p ) e. B ) -> ( ( X ./\ Y ) C Y -> ( ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) -> ( ( X ./\ Y ) .\/ p ) = Y ) ) ) ) |
| 69 |
62 65 68
|
sylc |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X ./\ Y ) C Y -> ( ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) -> ( ( X ./\ Y ) .\/ p ) = Y ) ) ) |
| 70 |
69
|
com23 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( ( X ./\ Y ) ( lt ` K ) ( ( X ./\ Y ) .\/ p ) /\ ( ( X ./\ Y ) .\/ p ) ( le ` K ) Y ) -> ( ( X ./\ Y ) C Y -> ( ( X ./\ Y ) .\/ p ) = Y ) ) ) |
| 71 |
60 70
|
sylbid |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) -> ( ( X ./\ Y ) C Y -> ( ( X ./\ Y ) .\/ p ) = Y ) ) ) |
| 72 |
71
|
com23 |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) -> ( ( X ./\ Y ) C Y -> ( ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) -> ( ( X ./\ Y ) .\/ p ) = Y ) ) ) |
| 73 |
72
|
imp32 |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> ( ( X ./\ Y ) .\/ p ) = Y ) |
| 74 |
73
|
oveq2d |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> ( X .\/ ( ( X ./\ Y ) .\/ p ) ) = ( X .\/ Y ) ) |
| 75 |
51 74
|
eqtr3d |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. B ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> ( X .\/ p ) = ( X .\/ Y ) ) |
| 76 |
20 75
|
sylanl2 |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> ( X .\/ p ) = ( X .\/ Y ) ) |
| 77 |
37 76
|
breqtrd |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) /\ ( ( X ./\ Y ) C Y /\ ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) ) ) -> X C ( X .\/ Y ) ) |
| 78 |
77
|
expr |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ p e. ( Atoms ` K ) ) /\ ( X ./\ Y ) C Y ) -> ( ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) -> X C ( X .\/ Y ) ) ) |
| 79 |
78
|
an32s |
|- ( ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( X ./\ Y ) C Y ) /\ p e. ( Atoms ` K ) ) -> ( ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) -> X C ( X .\/ Y ) ) ) |
| 80 |
79
|
rexlimdva |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( X ./\ Y ) C Y ) -> ( E. p e. ( Atoms ` K ) ( -. p ( le ` K ) ( X ./\ Y ) /\ p ( le ` K ) Y ) -> X C ( X .\/ Y ) ) ) |
| 81 |
17 80
|
mpd |
|- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( X ./\ Y ) C Y ) -> X C ( X .\/ Y ) ) |
| 82 |
81
|
ex |
|- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y -> X C ( X .\/ Y ) ) ) |