| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( x = 0 -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) ) | 
						
							| 2 |  | oveq1 |  |-  ( x = 0 -> ( x x. A ) = ( 0 x. A ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( x = 0 -> ( cos ` ( x x. A ) ) = ( cos ` ( 0 x. A ) ) ) | 
						
							| 4 | 2 | fveq2d |  |-  ( x = 0 -> ( sin ` ( x x. A ) ) = ( sin ` ( 0 x. A ) ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( x = 0 -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( 0 x. A ) ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( x = 0 -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) | 
						
							| 7 | 1 6 | eqeq12d |  |-  ( x = 0 -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( x = 0 -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( x = k -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) ) | 
						
							| 10 |  | oveq1 |  |-  ( x = k -> ( x x. A ) = ( k x. A ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( x = k -> ( cos ` ( x x. A ) ) = ( cos ` ( k x. A ) ) ) | 
						
							| 12 | 10 | fveq2d |  |-  ( x = k -> ( sin ` ( x x. A ) ) = ( sin ` ( k x. A ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( x = k -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 14 | 11 13 | oveq12d |  |-  ( x = k -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 15 | 9 14 | eqeq12d |  |-  ( x = k -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = k -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( x = ( k + 1 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( x = ( k + 1 ) -> ( x x. A ) = ( ( k + 1 ) x. A ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( x = ( k + 1 ) -> ( cos ` ( x x. A ) ) = ( cos ` ( ( k + 1 ) x. A ) ) ) | 
						
							| 20 | 18 | fveq2d |  |-  ( x = ( k + 1 ) -> ( sin ` ( x x. A ) ) = ( sin ` ( ( k + 1 ) x. A ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( x = ( k + 1 ) -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( x = ( k + 1 ) -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) | 
						
							| 23 | 17 22 | eqeq12d |  |-  ( x = ( k + 1 ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) | 
						
							| 24 | 23 | imbi2d |  |-  ( x = ( k + 1 ) -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) | 
						
							| 25 |  | oveq2 |  |-  ( x = N -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) | 
						
							| 26 |  | oveq1 |  |-  ( x = N -> ( x x. A ) = ( N x. A ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( x = N -> ( cos ` ( x x. A ) ) = ( cos ` ( N x. A ) ) ) | 
						
							| 28 | 26 | fveq2d |  |-  ( x = N -> ( sin ` ( x x. A ) ) = ( sin ` ( N x. A ) ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( x = N -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( N x. A ) ) ) ) | 
						
							| 30 | 27 29 | oveq12d |  |-  ( x = N -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 31 | 25 30 | eqeq12d |  |-  ( x = N -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) | 
						
							| 32 | 31 | imbi2d |  |-  ( x = N -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) ) | 
						
							| 33 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 34 |  | ax-icn |  |-  _i e. CC | 
						
							| 35 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 36 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 37 | 34 35 36 | sylancr |  |-  ( A e. CC -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 38 |  | addcl |  |-  ( ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC ) | 
						
							| 39 | 33 37 38 | syl2anc |  |-  ( A e. CC -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC ) | 
						
							| 40 |  | exp0 |  |-  ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = 1 ) | 
						
							| 41 | 39 40 | syl |  |-  ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = 1 ) | 
						
							| 42 |  | mul02 |  |-  ( A e. CC -> ( 0 x. A ) = 0 ) | 
						
							| 43 | 42 | fveq2d |  |-  ( A e. CC -> ( cos ` ( 0 x. A ) ) = ( cos ` 0 ) ) | 
						
							| 44 |  | cos0 |  |-  ( cos ` 0 ) = 1 | 
						
							| 45 | 43 44 | eqtrdi |  |-  ( A e. CC -> ( cos ` ( 0 x. A ) ) = 1 ) | 
						
							| 46 | 42 | fveq2d |  |-  ( A e. CC -> ( sin ` ( 0 x. A ) ) = ( sin ` 0 ) ) | 
						
							| 47 |  | sin0 |  |-  ( sin ` 0 ) = 0 | 
						
							| 48 | 46 47 | eqtrdi |  |-  ( A e. CC -> ( sin ` ( 0 x. A ) ) = 0 ) | 
						
							| 49 | 48 | oveq2d |  |-  ( A e. CC -> ( _i x. ( sin ` ( 0 x. A ) ) ) = ( _i x. 0 ) ) | 
						
							| 50 | 34 | mul01i |  |-  ( _i x. 0 ) = 0 | 
						
							| 51 | 49 50 | eqtrdi |  |-  ( A e. CC -> ( _i x. ( sin ` ( 0 x. A ) ) ) = 0 ) | 
						
							| 52 | 45 51 | oveq12d |  |-  ( A e. CC -> ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) = ( 1 + 0 ) ) | 
						
							| 53 |  | ax-1cn |  |-  1 e. CC | 
						
							| 54 | 53 | addridi |  |-  ( 1 + 0 ) = 1 | 
						
							| 55 | 52 54 | eqtrdi |  |-  ( A e. CC -> ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) = 1 ) | 
						
							| 56 | 41 55 | eqtr4d |  |-  ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) | 
						
							| 57 |  | expp1 |  |-  ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC /\ k e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 58 | 39 57 | sylan |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 59 | 58 | ancoms |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 61 |  | oveq1 |  |-  ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 63 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 64 |  | mulcl |  |-  ( ( k e. CC /\ A e. CC ) -> ( k x. A ) e. CC ) | 
						
							| 65 | 63 64 | sylan |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( k x. A ) e. CC ) | 
						
							| 66 |  | sinadd |  |-  ( ( ( k x. A ) e. CC /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 67 | 65 66 | sylancom |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 68 | 33 | adantl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( cos ` A ) e. CC ) | 
						
							| 69 |  | sincl |  |-  ( ( k x. A ) e. CC -> ( sin ` ( k x. A ) ) e. CC ) | 
						
							| 70 | 65 69 | syl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( k x. A ) ) e. CC ) | 
						
							| 71 |  | mulcom |  |-  ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) = ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) ) | 
						
							| 72 | 68 70 71 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) = ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 74 |  | mulcl |  |-  ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 75 | 68 70 74 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 76 |  | coscl |  |-  ( ( k x. A ) e. CC -> ( cos ` ( k x. A ) ) e. CC ) | 
						
							| 77 | 65 76 | syl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( k x. A ) ) e. CC ) | 
						
							| 78 | 35 | adantl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( sin ` A ) e. CC ) | 
						
							| 79 |  | mulcl |  |-  ( ( ( cos ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) | 
						
							| 80 | 77 78 79 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) | 
						
							| 81 |  | addcom |  |-  ( ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC /\ ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 82 | 75 80 81 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 83 | 67 73 82 | 3eqtr2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) = ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 86 |  | adddir |  |-  ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) | 
						
							| 87 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 88 | 87 | oveq2d |  |-  ( A e. CC -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) | 
						
							| 89 | 88 | 3ad2ant3 |  |-  ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) | 
						
							| 90 | 86 89 | eqtrd |  |-  ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) | 
						
							| 91 | 63 90 | syl3an1 |  |-  ( ( k e. NN0 /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) | 
						
							| 92 | 53 91 | mp3an2 |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k + 1 ) x. A ) ) = ( cos ` ( ( k x. A ) + A ) ) ) | 
						
							| 94 | 92 | fveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k + 1 ) x. A ) ) = ( sin ` ( ( k x. A ) + A ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) = ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) | 
						
							| 96 | 93 95 | oveq12d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) ) | 
						
							| 97 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 98 | 34 97 | mpan |  |-  ( ( sin ` ( k x. A ) ) e. CC -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 99 | 65 69 98 | 3syl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 100 | 33 37 | jca |  |-  ( A e. CC -> ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) | 
						
							| 102 |  | muladd |  |-  ( ( ( ( cos ` ( k x. A ) ) e. CC /\ ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) /\ ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 103 | 77 99 101 102 | syl21anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 104 | 78 34 | jctil |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i e. CC /\ ( sin ` A ) e. CC ) ) | 
						
							| 105 | 70 34 | jctil |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) | 
						
							| 106 |  | mul4 |  |-  ( ( ( _i e. CC /\ ( sin ` A ) e. CC ) /\ ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( ( _i x. _i ) x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 107 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 108 | 107 | oveq1i |  |-  ( ( _i x. _i ) x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 109 | 106 108 | eqtrdi |  |-  ( ( ( _i e. CC /\ ( sin ` A ) e. CC ) /\ ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 110 | 104 105 109 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 112 | 111 | oveq1d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 113 |  | mul12 |  |-  ( ( ( cos ` ( k x. A ) ) e. CC /\ _i e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 114 | 34 113 | mp3an2 |  |-  ( ( ( cos ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 115 | 77 78 114 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 116 |  | mul12 |  |-  ( ( ( cos ` A ) e. CC /\ _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 117 | 34 116 | mp3an2 |  |-  ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 118 | 68 70 117 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 119 | 115 118 | oveq12d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 120 |  | adddi |  |-  ( ( _i e. CC /\ ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC /\ ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 121 | 34 120 | mp3an1 |  |-  ( ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC /\ ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 122 | 80 75 121 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 123 | 119 122 | eqtr4d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) | 
						
							| 124 | 123 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 125 | 103 112 124 | 3eqtrd |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 126 |  | mulcl |  |-  ( ( ( sin ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 127 | 78 70 126 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) | 
						
							| 128 |  | mulm1 |  |-  ( ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC -> ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 130 | 129 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 131 | 130 | oveq1d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 132 |  | mulcl |  |-  ( ( ( cos ` ( k x. A ) ) e. CC /\ ( cos ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC ) | 
						
							| 133 | 77 68 132 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC ) | 
						
							| 134 |  | negsub |  |-  ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 135 | 133 127 134 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 136 | 135 | oveq1d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 137 | 125 131 136 | 3eqtrd |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 138 |  | cosadd |  |-  ( ( ( k x. A ) e. CC /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 139 | 65 138 | sylancom |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) ) | 
						
							| 140 |  | mulcom |  |-  ( ( ( sin ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 141 | 70 78 140 | syl2anc |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) | 
						
							| 142 | 141 | oveq2d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 143 | 139 142 | eqtrd |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) | 
						
							| 144 | 143 | oveq1d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 145 | 137 144 | eqtr4d |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) | 
						
							| 146 | 85 96 145 | 3eqtr4rd |  |-  ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) | 
						
							| 148 | 60 62 147 | 3eqtrd |  |-  ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) | 
						
							| 149 | 148 | exp31 |  |-  ( k e. NN0 -> ( A e. CC -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) | 
						
							| 150 | 149 | a2d |  |-  ( k e. NN0 -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) | 
						
							| 151 | 8 16 24 32 56 150 | nn0ind |  |-  ( N e. NN0 -> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) | 
						
							| 152 | 151 | impcom |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |