| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkercncflem1.a |
|- A = ( Y - _pi ) |
| 2 |
|
dirkercncflem1.b |
|- B = ( Y + _pi ) |
| 3 |
|
dirkercncflem1.y |
|- ( ph -> Y e. RR ) |
| 4 |
|
dirkercncflem1.ymod0 |
|- ( ph -> ( Y mod ( 2 x. _pi ) ) = 0 ) |
| 5 |
|
pire |
|- _pi e. RR |
| 6 |
5
|
a1i |
|- ( ph -> _pi e. RR ) |
| 7 |
3 6
|
resubcld |
|- ( ph -> ( Y - _pi ) e. RR ) |
| 8 |
7
|
rexrd |
|- ( ph -> ( Y - _pi ) e. RR* ) |
| 9 |
1 8
|
eqeltrid |
|- ( ph -> A e. RR* ) |
| 10 |
3 6
|
readdcld |
|- ( ph -> ( Y + _pi ) e. RR ) |
| 11 |
10
|
rexrd |
|- ( ph -> ( Y + _pi ) e. RR* ) |
| 12 |
2 11
|
eqeltrid |
|- ( ph -> B e. RR* ) |
| 13 |
|
pipos |
|- 0 < _pi |
| 14 |
|
ltsubpos |
|- ( ( _pi e. RR /\ Y e. RR ) -> ( 0 < _pi <-> ( Y - _pi ) < Y ) ) |
| 15 |
13 14
|
mpbii |
|- ( ( _pi e. RR /\ Y e. RR ) -> ( Y - _pi ) < Y ) |
| 16 |
6 3 15
|
syl2anc |
|- ( ph -> ( Y - _pi ) < Y ) |
| 17 |
1 16
|
eqbrtrid |
|- ( ph -> A < Y ) |
| 18 |
|
ltaddpos |
|- ( ( _pi e. RR /\ Y e. RR ) -> ( 0 < _pi <-> Y < ( Y + _pi ) ) ) |
| 19 |
13 18
|
mpbii |
|- ( ( _pi e. RR /\ Y e. RR ) -> Y < ( Y + _pi ) ) |
| 20 |
6 3 19
|
syl2anc |
|- ( ph -> Y < ( Y + _pi ) ) |
| 21 |
20 2
|
breqtrrdi |
|- ( ph -> Y < B ) |
| 22 |
9 12 3 17 21
|
eliood |
|- ( ph -> Y e. ( A (,) B ) ) |
| 23 |
|
eldifi |
|- ( y e. ( ( A (,) B ) \ { Y } ) -> y e. ( A (,) B ) ) |
| 24 |
23
|
elioored |
|- ( y e. ( ( A (,) B ) \ { Y } ) -> y e. RR ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> y e. RR ) |
| 26 |
25
|
recnd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> y e. CC ) |
| 27 |
|
2cnd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> 2 e. CC ) |
| 28 |
|
picn |
|- _pi e. CC |
| 29 |
28
|
a1i |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> _pi e. CC ) |
| 30 |
|
2ne0 |
|- 2 =/= 0 |
| 31 |
30
|
a1i |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> 2 =/= 0 ) |
| 32 |
5 13
|
gt0ne0ii |
|- _pi =/= 0 |
| 33 |
32
|
a1i |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> _pi =/= 0 ) |
| 34 |
26 27 29 31 33
|
divdiv1d |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( y / 2 ) / _pi ) = ( y / ( 2 x. _pi ) ) ) |
| 35 |
|
2rp |
|- 2 e. RR+ |
| 36 |
35
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 37 |
|
pirp |
|- _pi e. RR+ |
| 38 |
37
|
a1i |
|- ( ph -> _pi e. RR+ ) |
| 39 |
36 38
|
rpmulcld |
|- ( ph -> ( 2 x. _pi ) e. RR+ ) |
| 40 |
|
mod0 |
|- ( ( Y e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( Y mod ( 2 x. _pi ) ) = 0 <-> ( Y / ( 2 x. _pi ) ) e. ZZ ) ) |
| 41 |
3 39 40
|
syl2anc |
|- ( ph -> ( ( Y mod ( 2 x. _pi ) ) = 0 <-> ( Y / ( 2 x. _pi ) ) e. ZZ ) ) |
| 42 |
4 41
|
mpbid |
|- ( ph -> ( Y / ( 2 x. _pi ) ) e. ZZ ) |
| 43 |
|
peano2zm |
|- ( ( Y / ( 2 x. _pi ) ) e. ZZ -> ( ( Y / ( 2 x. _pi ) ) - 1 ) e. ZZ ) |
| 44 |
42 43
|
syl |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) - 1 ) e. ZZ ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( ( Y / ( 2 x. _pi ) ) - 1 ) e. ZZ ) |
| 46 |
44
|
zred |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) - 1 ) e. RR ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( Y / ( 2 x. _pi ) ) - 1 ) e. RR ) |
| 48 |
1 7
|
eqeltrid |
|- ( ph -> A e. RR ) |
| 49 |
48 39
|
rerpdivcld |
|- ( ph -> ( A / ( 2 x. _pi ) ) e. RR ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( A / ( 2 x. _pi ) ) e. RR ) |
| 51 |
39
|
rpred |
|- ( ph -> ( 2 x. _pi ) e. RR ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( 2 x. _pi ) e. RR ) |
| 53 |
39
|
rpne0d |
|- ( ph -> ( 2 x. _pi ) =/= 0 ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( 2 x. _pi ) =/= 0 ) |
| 55 |
25 52 54
|
redivcld |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y / ( 2 x. _pi ) ) e. RR ) |
| 56 |
51
|
recnd |
|- ( ph -> ( 2 x. _pi ) e. CC ) |
| 57 |
56 53
|
dividd |
|- ( ph -> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) = 1 ) |
| 58 |
57
|
eqcomd |
|- ( ph -> 1 = ( ( 2 x. _pi ) / ( 2 x. _pi ) ) ) |
| 59 |
58
|
oveq2d |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) - 1 ) = ( ( Y / ( 2 x. _pi ) ) - ( ( 2 x. _pi ) / ( 2 x. _pi ) ) ) ) |
| 60 |
3
|
recnd |
|- ( ph -> Y e. CC ) |
| 61 |
60 56 56 53
|
divsubdird |
|- ( ph -> ( ( Y - ( 2 x. _pi ) ) / ( 2 x. _pi ) ) = ( ( Y / ( 2 x. _pi ) ) - ( ( 2 x. _pi ) / ( 2 x. _pi ) ) ) ) |
| 62 |
59 61
|
eqtr4d |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) - 1 ) = ( ( Y - ( 2 x. _pi ) ) / ( 2 x. _pi ) ) ) |
| 63 |
3 51
|
resubcld |
|- ( ph -> ( Y - ( 2 x. _pi ) ) e. RR ) |
| 64 |
28
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 65 |
64
|
eqcomi |
|- _pi = ( 1 x. _pi ) |
| 66 |
|
1lt2 |
|- 1 < 2 |
| 67 |
|
1re |
|- 1 e. RR |
| 68 |
|
2re |
|- 2 e. RR |
| 69 |
67 68 5 13
|
ltmul1ii |
|- ( 1 < 2 <-> ( 1 x. _pi ) < ( 2 x. _pi ) ) |
| 70 |
66 69
|
mpbi |
|- ( 1 x. _pi ) < ( 2 x. _pi ) |
| 71 |
65 70
|
eqbrtri |
|- _pi < ( 2 x. _pi ) |
| 72 |
71
|
a1i |
|- ( ph -> _pi < ( 2 x. _pi ) ) |
| 73 |
6 51 3 72
|
ltsub2dd |
|- ( ph -> ( Y - ( 2 x. _pi ) ) < ( Y - _pi ) ) |
| 74 |
73 1
|
breqtrrdi |
|- ( ph -> ( Y - ( 2 x. _pi ) ) < A ) |
| 75 |
63 48 39 74
|
ltdiv1dd |
|- ( ph -> ( ( Y - ( 2 x. _pi ) ) / ( 2 x. _pi ) ) < ( A / ( 2 x. _pi ) ) ) |
| 76 |
62 75
|
eqbrtrd |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) - 1 ) < ( A / ( 2 x. _pi ) ) ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( Y / ( 2 x. _pi ) ) - 1 ) < ( A / ( 2 x. _pi ) ) ) |
| 78 |
48
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> A e. RR ) |
| 79 |
39
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( 2 x. _pi ) e. RR+ ) |
| 80 |
23
|
adantl |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> y e. ( A (,) B ) ) |
| 81 |
9
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> A e. RR* ) |
| 82 |
12
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> B e. RR* ) |
| 83 |
|
elioo2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( y e. ( A (,) B ) <-> ( y e. RR /\ A < y /\ y < B ) ) ) |
| 84 |
81 82 83
|
syl2anc |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y e. ( A (,) B ) <-> ( y e. RR /\ A < y /\ y < B ) ) ) |
| 85 |
80 84
|
mpbid |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y e. RR /\ A < y /\ y < B ) ) |
| 86 |
85
|
simp2d |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> A < y ) |
| 87 |
78 25 79 86
|
ltdiv1dd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( A / ( 2 x. _pi ) ) < ( y / ( 2 x. _pi ) ) ) |
| 88 |
47 50 55 77 87
|
lttrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( Y / ( 2 x. _pi ) ) - 1 ) < ( y / ( 2 x. _pi ) ) ) |
| 89 |
88
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( ( Y / ( 2 x. _pi ) ) - 1 ) < ( y / ( 2 x. _pi ) ) ) |
| 90 |
24
|
ad2antlr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> y e. RR ) |
| 91 |
3
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> Y e. RR ) |
| 92 |
39
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( 2 x. _pi ) e. RR+ ) |
| 93 |
|
simpr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> y < Y ) |
| 94 |
90 91 92 93
|
ltdiv1dd |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( y / ( 2 x. _pi ) ) < ( Y / ( 2 x. _pi ) ) ) |
| 95 |
60 56 53
|
divcld |
|- ( ph -> ( Y / ( 2 x. _pi ) ) e. CC ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) e. CC ) |
| 97 |
|
1cnd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> 1 e. CC ) |
| 98 |
96 97
|
npcand |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( ( Y / ( 2 x. _pi ) ) - 1 ) + 1 ) = ( Y / ( 2 x. _pi ) ) ) |
| 99 |
98
|
eqcomd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) = ( ( ( Y / ( 2 x. _pi ) ) - 1 ) + 1 ) ) |
| 100 |
99
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( Y / ( 2 x. _pi ) ) = ( ( ( Y / ( 2 x. _pi ) ) - 1 ) + 1 ) ) |
| 101 |
94 100
|
breqtrd |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> ( y / ( 2 x. _pi ) ) < ( ( ( Y / ( 2 x. _pi ) ) - 1 ) + 1 ) ) |
| 102 |
|
btwnnz |
|- ( ( ( ( Y / ( 2 x. _pi ) ) - 1 ) e. ZZ /\ ( ( Y / ( 2 x. _pi ) ) - 1 ) < ( y / ( 2 x. _pi ) ) /\ ( y / ( 2 x. _pi ) ) < ( ( ( Y / ( 2 x. _pi ) ) - 1 ) + 1 ) ) -> -. ( y / ( 2 x. _pi ) ) e. ZZ ) |
| 103 |
45 89 101 102
|
syl3anc |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y < Y ) -> -. ( y / ( 2 x. _pi ) ) e. ZZ ) |
| 104 |
42
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> ( Y / ( 2 x. _pi ) ) e. ZZ ) |
| 105 |
3
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> Y e. RR ) |
| 106 |
25
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> y e. RR ) |
| 107 |
79
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> ( 2 x. _pi ) e. RR+ ) |
| 108 |
25
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y <_ Y ) -> y e. RR ) |
| 109 |
3
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y <_ Y ) -> Y e. RR ) |
| 110 |
|
simpr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y <_ Y ) -> y <_ Y ) |
| 111 |
|
eldifsni |
|- ( y e. ( ( A (,) B ) \ { Y } ) -> y =/= Y ) |
| 112 |
111
|
necomd |
|- ( y e. ( ( A (,) B ) \ { Y } ) -> Y =/= y ) |
| 113 |
112
|
ad2antlr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y <_ Y ) -> Y =/= y ) |
| 114 |
108 109 110 113
|
leneltd |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ y <_ Y ) -> y < Y ) |
| 115 |
114
|
stoic1a |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> -. y <_ Y ) |
| 116 |
105 106
|
ltnled |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> ( Y < y <-> -. y <_ Y ) ) |
| 117 |
115 116
|
mpbird |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> Y < y ) |
| 118 |
105 106 107 117
|
ltdiv1dd |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> ( Y / ( 2 x. _pi ) ) < ( y / ( 2 x. _pi ) ) ) |
| 119 |
2 10
|
eqeltrid |
|- ( ph -> B e. RR ) |
| 120 |
119 39
|
rerpdivcld |
|- ( ph -> ( B / ( 2 x. _pi ) ) e. RR ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( B / ( 2 x. _pi ) ) e. RR ) |
| 122 |
3 39
|
rerpdivcld |
|- ( ph -> ( Y / ( 2 x. _pi ) ) e. RR ) |
| 123 |
122
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) e. RR ) |
| 124 |
|
1red |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> 1 e. RR ) |
| 125 |
123 124
|
readdcld |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( Y / ( 2 x. _pi ) ) + 1 ) e. RR ) |
| 126 |
119
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> B e. RR ) |
| 127 |
85
|
simp3d |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> y < B ) |
| 128 |
25 126 79 127
|
ltdiv1dd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y / ( 2 x. _pi ) ) < ( B / ( 2 x. _pi ) ) ) |
| 129 |
2
|
oveq1i |
|- ( B / ( 2 x. _pi ) ) = ( ( Y + _pi ) / ( 2 x. _pi ) ) |
| 130 |
28
|
a1i |
|- ( ph -> _pi e. CC ) |
| 131 |
60 130 56 53
|
divdird |
|- ( ph -> ( ( Y + _pi ) / ( 2 x. _pi ) ) = ( ( Y / ( 2 x. _pi ) ) + ( _pi / ( 2 x. _pi ) ) ) ) |
| 132 |
6 39
|
rerpdivcld |
|- ( ph -> ( _pi / ( 2 x. _pi ) ) e. RR ) |
| 133 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 134 |
|
2cn |
|- 2 e. CC |
| 135 |
134 28
|
mulcomi |
|- ( 2 x. _pi ) = ( _pi x. 2 ) |
| 136 |
135
|
oveq2i |
|- ( _pi / ( 2 x. _pi ) ) = ( _pi / ( _pi x. 2 ) ) |
| 137 |
28 32
|
pm3.2i |
|- ( _pi e. CC /\ _pi =/= 0 ) |
| 138 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 139 |
|
divdiv1 |
|- ( ( _pi e. CC /\ ( _pi e. CC /\ _pi =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi / _pi ) / 2 ) = ( _pi / ( _pi x. 2 ) ) ) |
| 140 |
28 137 138 139
|
mp3an |
|- ( ( _pi / _pi ) / 2 ) = ( _pi / ( _pi x. 2 ) ) |
| 141 |
28 32
|
dividi |
|- ( _pi / _pi ) = 1 |
| 142 |
141
|
oveq1i |
|- ( ( _pi / _pi ) / 2 ) = ( 1 / 2 ) |
| 143 |
136 140 142
|
3eqtr2i |
|- ( _pi / ( 2 x. _pi ) ) = ( 1 / 2 ) |
| 144 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 145 |
143 144
|
eqbrtri |
|- ( _pi / ( 2 x. _pi ) ) < 1 |
| 146 |
145
|
a1i |
|- ( ph -> ( _pi / ( 2 x. _pi ) ) < 1 ) |
| 147 |
132 133 122 146
|
ltadd2dd |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) + ( _pi / ( 2 x. _pi ) ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 148 |
131 147
|
eqbrtrd |
|- ( ph -> ( ( Y + _pi ) / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 149 |
129 148
|
eqbrtrid |
|- ( ph -> ( B / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 150 |
149
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( B / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 151 |
55 121 125 128 150
|
lttrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 152 |
151
|
adantr |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> ( y / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 153 |
|
btwnnz |
|- ( ( ( Y / ( 2 x. _pi ) ) e. ZZ /\ ( Y / ( 2 x. _pi ) ) < ( y / ( 2 x. _pi ) ) /\ ( y / ( 2 x. _pi ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) -> -. ( y / ( 2 x. _pi ) ) e. ZZ ) |
| 154 |
104 118 152 153
|
syl3anc |
|- ( ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) /\ -. y < Y ) -> -. ( y / ( 2 x. _pi ) ) e. ZZ ) |
| 155 |
103 154
|
pm2.61dan |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( y / ( 2 x. _pi ) ) e. ZZ ) |
| 156 |
34 155
|
eqneltrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( ( y / 2 ) / _pi ) e. ZZ ) |
| 157 |
26
|
halfcld |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( y / 2 ) e. CC ) |
| 158 |
|
sineq0 |
|- ( ( y / 2 ) e. CC -> ( ( sin ` ( y / 2 ) ) = 0 <-> ( ( y / 2 ) / _pi ) e. ZZ ) ) |
| 159 |
157 158
|
syl |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( sin ` ( y / 2 ) ) = 0 <-> ( ( y / 2 ) / _pi ) e. ZZ ) ) |
| 160 |
156 159
|
mtbird |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( sin ` ( y / 2 ) ) = 0 ) |
| 161 |
160
|
neqned |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( sin ` ( y / 2 ) ) =/= 0 ) |
| 162 |
34
|
oveq1d |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( ( y / 2 ) / _pi ) + ( 1 / 2 ) ) = ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 163 |
42
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) e. ZZ ) |
| 164 |
1
|
a1i |
|- ( ph -> A = ( Y - _pi ) ) |
| 165 |
164
|
oveq1d |
|- ( ph -> ( A + _pi ) = ( ( Y - _pi ) + _pi ) ) |
| 166 |
60 130
|
npcand |
|- ( ph -> ( ( Y - _pi ) + _pi ) = Y ) |
| 167 |
165 166
|
eqtr2d |
|- ( ph -> Y = ( A + _pi ) ) |
| 168 |
167
|
oveq1d |
|- ( ph -> ( Y / ( 2 x. _pi ) ) = ( ( A + _pi ) / ( 2 x. _pi ) ) ) |
| 169 |
48
|
recnd |
|- ( ph -> A e. CC ) |
| 170 |
169 130 56 53
|
divdird |
|- ( ph -> ( ( A + _pi ) / ( 2 x. _pi ) ) = ( ( A / ( 2 x. _pi ) ) + ( _pi / ( 2 x. _pi ) ) ) ) |
| 171 |
130
|
mulridd |
|- ( ph -> ( _pi x. 1 ) = _pi ) |
| 172 |
171
|
eqcomd |
|- ( ph -> _pi = ( _pi x. 1 ) ) |
| 173 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 174 |
173 130
|
mulcomd |
|- ( ph -> ( 2 x. _pi ) = ( _pi x. 2 ) ) |
| 175 |
172 174
|
oveq12d |
|- ( ph -> ( _pi / ( 2 x. _pi ) ) = ( ( _pi x. 1 ) / ( _pi x. 2 ) ) ) |
| 176 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 177 |
30
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 178 |
32
|
a1i |
|- ( ph -> _pi =/= 0 ) |
| 179 |
176 173 130 177 178
|
divcan5d |
|- ( ph -> ( ( _pi x. 1 ) / ( _pi x. 2 ) ) = ( 1 / 2 ) ) |
| 180 |
175 179
|
eqtrd |
|- ( ph -> ( _pi / ( 2 x. _pi ) ) = ( 1 / 2 ) ) |
| 181 |
180
|
oveq2d |
|- ( ph -> ( ( A / ( 2 x. _pi ) ) + ( _pi / ( 2 x. _pi ) ) ) = ( ( A / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 182 |
168 170 181
|
3eqtrd |
|- ( ph -> ( Y / ( 2 x. _pi ) ) = ( ( A / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) = ( ( A / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 184 |
124
|
rehalfcld |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( 1 / 2 ) e. RR ) |
| 185 |
50 55 184 87
|
ltadd1dd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( A / ( 2 x. _pi ) ) + ( 1 / 2 ) ) < ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 186 |
183 185
|
eqbrtrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( Y / ( 2 x. _pi ) ) < ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 187 |
55 121 184 128
|
ltadd1dd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) < ( ( B / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 188 |
129
|
a1i |
|- ( ph -> ( B / ( 2 x. _pi ) ) = ( ( Y + _pi ) / ( 2 x. _pi ) ) ) |
| 189 |
188
|
oveq1d |
|- ( ph -> ( ( B / ( 2 x. _pi ) ) + ( 1 / 2 ) ) = ( ( ( Y + _pi ) / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 190 |
180
|
oveq2d |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) + ( _pi / ( 2 x. _pi ) ) ) = ( ( Y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 191 |
131 190
|
eqtrd |
|- ( ph -> ( ( Y + _pi ) / ( 2 x. _pi ) ) = ( ( Y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) ) |
| 192 |
191
|
oveq1d |
|- ( ph -> ( ( ( Y + _pi ) / ( 2 x. _pi ) ) + ( 1 / 2 ) ) = ( ( ( Y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 193 |
176
|
halfcld |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 194 |
95 193 193
|
addassd |
|- ( ph -> ( ( ( Y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( Y / ( 2 x. _pi ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 195 |
176
|
2halvesd |
|- ( ph -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 196 |
195
|
oveq2d |
|- ( ph -> ( ( Y / ( 2 x. _pi ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 197 |
194 196
|
eqtrd |
|- ( ph -> ( ( ( Y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 198 |
189 192 197
|
3eqtrd |
|- ( ph -> ( ( B / ( 2 x. _pi ) ) + ( 1 / 2 ) ) = ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 199 |
198
|
adantr |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( B / ( 2 x. _pi ) ) + ( 1 / 2 ) ) = ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 200 |
187 199
|
breqtrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) |
| 201 |
|
btwnnz |
|- ( ( ( Y / ( 2 x. _pi ) ) e. ZZ /\ ( Y / ( 2 x. _pi ) ) < ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) /\ ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) < ( ( Y / ( 2 x. _pi ) ) + 1 ) ) -> -. ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) e. ZZ ) |
| 202 |
163 186 200 201
|
syl3anc |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( ( y / ( 2 x. _pi ) ) + ( 1 / 2 ) ) e. ZZ ) |
| 203 |
162 202
|
eqneltrd |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( ( ( y / 2 ) / _pi ) + ( 1 / 2 ) ) e. ZZ ) |
| 204 |
|
coseq0 |
|- ( ( y / 2 ) e. CC -> ( ( cos ` ( y / 2 ) ) = 0 <-> ( ( ( y / 2 ) / _pi ) + ( 1 / 2 ) ) e. ZZ ) ) |
| 205 |
157 204
|
syl |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( cos ` ( y / 2 ) ) = 0 <-> ( ( ( y / 2 ) / _pi ) + ( 1 / 2 ) ) e. ZZ ) ) |
| 206 |
203 205
|
mtbird |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> -. ( cos ` ( y / 2 ) ) = 0 ) |
| 207 |
206
|
neqned |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( cos ` ( y / 2 ) ) =/= 0 ) |
| 208 |
161 207
|
jca |
|- ( ( ph /\ y e. ( ( A (,) B ) \ { Y } ) ) -> ( ( sin ` ( y / 2 ) ) =/= 0 /\ ( cos ` ( y / 2 ) ) =/= 0 ) ) |
| 209 |
208
|
ralrimiva |
|- ( ph -> A. y e. ( ( A (,) B ) \ { Y } ) ( ( sin ` ( y / 2 ) ) =/= 0 /\ ( cos ` ( y / 2 ) ) =/= 0 ) ) |
| 210 |
22 209
|
jca |
|- ( ph -> ( Y e. ( A (,) B ) /\ A. y e. ( ( A (,) B ) \ { Y } ) ( ( sin ` ( y / 2 ) ) =/= 0 /\ ( cos ` ( y / 2 ) ) =/= 0 ) ) ) |