| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnp.j |
|- J = ( K |`t A ) |
| 2 |
|
dvcnp.k |
|- K = ( TopOpen ` CCfld ) |
| 3 |
|
simpl2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F : A --> CC ) |
| 4 |
3
|
ffvelcdmda |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` z ) e. CC ) |
| 5 |
2
|
cnfldtop |
|- K e. Top |
| 6 |
|
simpl1 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S C_ CC ) |
| 7 |
|
cnex |
|- CC e. _V |
| 8 |
|
ssexg |
|- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S e. _V ) |
| 10 |
|
resttop |
|- ( ( K e. Top /\ S e. _V ) -> ( K |`t S ) e. Top ) |
| 11 |
5 9 10
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. Top ) |
| 12 |
|
simpl3 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ S ) |
| 13 |
2
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
| 14 |
|
resttopon |
|- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 15 |
13 6 14
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 16 |
|
toponuni |
|- ( ( K |`t S ) e. ( TopOn ` S ) -> S = U. ( K |`t S ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S = U. ( K |`t S ) ) |
| 18 |
12 17
|
sseqtrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ U. ( K |`t S ) ) |
| 19 |
|
eqid |
|- U. ( K |`t S ) = U. ( K |`t S ) |
| 20 |
19
|
ntrss2 |
|- ( ( ( K |`t S ) e. Top /\ A C_ U. ( K |`t S ) ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
| 21 |
11 18 20
|
syl2anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
| 22 |
|
eqid |
|- ( K |`t S ) = ( K |`t S ) |
| 23 |
|
eqid |
|- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
| 24 |
|
simp1 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
| 25 |
|
simp2 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
| 26 |
|
simp3 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
| 27 |
22 2 23 24 25 26
|
eldv |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
| 28 |
27
|
simprbda |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. ( ( int ` ( K |`t S ) ) ` A ) ) |
| 29 |
21 28
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. A ) |
| 30 |
3 29
|
ffvelcdmd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. CC ) |
| 31 |
30
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` B ) e. CC ) |
| 32 |
4 31
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
| 33 |
|
ssidd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> CC C_ CC ) |
| 34 |
|
txtopon |
|- ( ( K e. ( TopOn ` CC ) /\ K e. ( TopOn ` CC ) ) -> ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) ) |
| 35 |
13 13 34
|
mp2an |
|- ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) |
| 36 |
35
|
toponrestid |
|- ( K tX K ) = ( ( K tX K ) |`t ( CC X. CC ) ) |
| 37 |
12 6
|
sstrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ CC ) |
| 38 |
|
eqid |
|- ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) |
| 39 |
22 2 38 24 25 26
|
eldv |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ y e. ( ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) limCC B ) ) ) ) |
| 40 |
39
|
simprbda |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. ( ( int ` ( K |`t S ) ) ` A ) ) |
| 41 |
21 40
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. A ) |
| 42 |
3 37 41
|
dvlem |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 43 |
37
|
ssdifssd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( A \ { B } ) C_ CC ) |
| 44 |
43
|
sselda |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. CC ) |
| 45 |
37 41
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. CC ) |
| 46 |
45
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> B e. CC ) |
| 47 |
44 46
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) e. CC ) |
| 48 |
27
|
simplbda |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
| 49 |
|
limcresi |
|- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) |
| 50 |
|
difss |
|- ( A \ { B } ) C_ A |
| 51 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) ) |
| 52 |
50 51
|
ax-mp |
|- ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) |
| 53 |
52
|
oveq1i |
|- ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
| 54 |
49 53
|
sseqtri |
|- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
| 55 |
45
|
subidd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) = 0 ) |
| 56 |
|
ssid |
|- CC C_ CC |
| 57 |
|
cncfmptid |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
| 58 |
37 56 57
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
| 59 |
|
cncfmptc |
|- ( ( B e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
| 60 |
45 37 33 59
|
syl3anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
| 61 |
58 60
|
subcncf |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( z - B ) ) e. ( A -cn-> CC ) ) |
| 62 |
|
oveq1 |
|- ( z = B -> ( z - B ) = ( B - B ) ) |
| 63 |
61 41 62
|
cnmptlimc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
| 64 |
55 63
|
eqeltrrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
| 65 |
54 64
|
sselid |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) ) |
| 66 |
2
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) |
| 67 |
24 25 26
|
dvcl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. CC ) |
| 68 |
|
0cn |
|- 0 e. CC |
| 69 |
|
opelxpi |
|- ( ( y e. CC /\ 0 e. CC ) -> <. y , 0 >. e. ( CC X. CC ) ) |
| 70 |
67 68 69
|
sylancl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. y , 0 >. e. ( CC X. CC ) ) |
| 71 |
35
|
toponunii |
|- ( CC X. CC ) = U. ( K tX K ) |
| 72 |
71
|
cncnpi |
|- ( ( ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) /\ <. y , 0 >. e. ( CC X. CC ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
| 73 |
66 70 72
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
| 74 |
42 47 33 33 2 36 48 65 73
|
limccnp2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) limCC B ) ) |
| 75 |
|
df-mpt |
|- ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } |
| 76 |
75
|
oveq1i |
|- ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) limCC B ) = ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) |
| 77 |
74 76
|
eleqtrdi |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) e. ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) ) |
| 78 |
|
0cnd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. CC ) |
| 79 |
|
ovmpot |
|- ( ( y e. CC /\ 0 e. CC ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) = ( y x. 0 ) ) |
| 80 |
67 78 79
|
syl2anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) = ( y x. 0 ) ) |
| 81 |
3 37 29
|
dvlem |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 82 |
37 29
|
sseldd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. CC ) |
| 83 |
82
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> B e. CC ) |
| 84 |
44 83
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) e. CC ) |
| 85 |
|
ovmpot |
|- ( ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC /\ ( z - B ) e. CC ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) |
| 86 |
81 84 85
|
syl2anc |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) |
| 87 |
86
|
eqeq2d |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) <-> w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) |
| 88 |
87
|
pm5.32da |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) <-> ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) ) |
| 89 |
88
|
opabbidv |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) } ) |
| 90 |
|
df-mpt |
|- ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) } |
| 91 |
89 90
|
eqtr4di |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } = ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) |
| 92 |
91
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) ) |
| 93 |
77 80 92
|
3eltr3d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) ) |
| 94 |
67
|
mul01d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) = 0 ) |
| 95 |
3
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> F : A --> CC ) |
| 96 |
|
simpr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. ( A \ { B } ) ) |
| 97 |
50 96
|
sselid |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. A ) |
| 98 |
95 97
|
ffvelcdmd |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` z ) e. CC ) |
| 99 |
30
|
adantr |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` B ) e. CC ) |
| 100 |
98 99
|
subcld |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
| 101 |
|
eldifsni |
|- ( z e. ( A \ { B } ) -> z =/= B ) |
| 102 |
101
|
adantl |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z =/= B ) |
| 103 |
44 83 102
|
subne0d |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) =/= 0 ) |
| 104 |
100 84 103
|
divcan1d |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) = ( ( F ` z ) - ( F ` B ) ) ) |
| 105 |
104
|
mpteq2dva |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
| 106 |
105
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 107 |
93 94 106
|
3eltr3d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 108 |
32
|
fmpttd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) : A --> CC ) |
| 109 |
108
|
limcdif |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) ) |
| 110 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
| 111 |
50 110
|
ax-mp |
|- ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) |
| 112 |
111
|
oveq1i |
|- ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) |
| 113 |
109 112
|
eqtrdi |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 114 |
107 113
|
eleqtrrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 115 |
|
cncfmptc |
|- ( ( ( F ` B ) e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
| 116 |
30 37 33 115
|
syl3anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
| 117 |
|
eqidd |
|- ( z = B -> ( F ` B ) = ( F ` B ) ) |
| 118 |
116 29 117
|
cnmptlimc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( ( z e. A |-> ( F ` B ) ) limCC B ) ) |
| 119 |
2
|
addcn |
|- + e. ( ( K tX K ) Cn K ) |
| 120 |
|
opelxpi |
|- ( ( 0 e. CC /\ ( F ` B ) e. CC ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
| 121 |
68 30 120
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
| 122 |
71
|
cncnpi |
|- ( ( + e. ( ( K tX K ) Cn K ) /\ <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
| 123 |
119 121 122
|
sylancr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
| 124 |
32 31 33 33 2 36 114 118 123
|
limccnp2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) e. ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) ) |
| 125 |
30
|
addlidd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) = ( F ` B ) ) |
| 126 |
4 31
|
npcand |
|- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) = ( F ` z ) ) |
| 127 |
126
|
mpteq2dva |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = ( z e. A |-> ( F ` z ) ) ) |
| 128 |
3
|
feqmptd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F = ( z e. A |-> ( F ` z ) ) ) |
| 129 |
127 128
|
eqtr4d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = F ) |
| 130 |
129
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) = ( F limCC B ) ) |
| 131 |
124 125 130
|
3eltr3d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( F limCC B ) ) |
| 132 |
2 1
|
cnplimc |
|- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 133 |
37 29 132
|
syl2anc |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 134 |
3 131 133
|
mpbir2and |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F e. ( ( J CnP K ) ` B ) ) |
| 135 |
134
|
ex |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
| 136 |
135
|
exlimdv |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( E. y B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
| 137 |
|
eldmg |
|- ( B e. dom ( S _D F ) -> ( B e. dom ( S _D F ) <-> E. y B ( S _D F ) y ) ) |
| 138 |
137
|
ibi |
|- ( B e. dom ( S _D F ) -> E. y B ( S _D F ) y ) |
| 139 |
136 138
|
impel |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F e. ( ( J CnP K ) ` B ) ) |