Step |
Hyp |
Ref |
Expression |
1 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
2 |
|
efne0 |
|- ( A e. CC -> ( exp ` A ) =/= 0 ) |
3 |
1 2
|
logcld |
|- ( A e. CC -> ( log ` ( exp ` A ) ) e. CC ) |
4 |
|
efsub |
|- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
5 |
3 4
|
mpdan |
|- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
6 |
|
eflog |
|- ( ( ( exp ` A ) e. CC /\ ( exp ` A ) =/= 0 ) -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
7 |
1 2 6
|
syl2anc |
|- ( A e. CC -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
8 |
7
|
oveq2d |
|- ( A e. CC -> ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` A ) ) ) |
9 |
1 2
|
dividd |
|- ( A e. CC -> ( ( exp ` A ) / ( exp ` A ) ) = 1 ) |
10 |
5 8 9
|
3eqtrd |
|- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 ) |
11 |
|
subcl |
|- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
12 |
3 11
|
mpdan |
|- ( A e. CC -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
13 |
|
efeq1 |
|- ( ( A - ( log ` ( exp ` A ) ) ) e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
14 |
12 13
|
syl |
|- ( A e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
15 |
10 14
|
mpbid |
|- ( A e. CC -> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) |
16 |
|
ax-icn |
|- _i e. CC |
17 |
|
2cn |
|- 2 e. CC |
18 |
|
picn |
|- _pi e. CC |
19 |
17 18
|
mulcli |
|- ( 2 x. _pi ) e. CC |
20 |
16 19
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
21 |
20
|
a1i |
|- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
22 |
|
ine0 |
|- _i =/= 0 |
23 |
|
2ne0 |
|- 2 =/= 0 |
24 |
|
pire |
|- _pi e. RR |
25 |
|
pipos |
|- 0 < _pi |
26 |
24 25
|
gt0ne0ii |
|- _pi =/= 0 |
27 |
17 18 23 26
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
28 |
16 19 22 27
|
mulne0i |
|- ( _i x. ( 2 x. _pi ) ) =/= 0 |
29 |
28
|
a1i |
|- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
30 |
12 21 29
|
divcan2d |
|- ( A e. CC -> ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) = ( A - ( log ` ( exp ` A ) ) ) ) |
31 |
30
|
oveq2d |
|- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) = ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) ) |
32 |
|
pncan3 |
|- ( ( ( log ` ( exp ` A ) ) e. CC /\ A e. CC ) -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
33 |
3 32
|
mpancom |
|- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
34 |
31 33
|
eqtr2d |
|- ( A e. CC -> A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
35 |
|
oveq2 |
|- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) |
36 |
35
|
oveq2d |
|- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
37 |
36
|
rspceeqv |
|- ( ( ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ /\ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
38 |
15 34 37
|
syl2anc |
|- ( A e. CC -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
39 |
38
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
40 |
|
fveq2 |
|- ( ( exp ` A ) = B -> ( log ` ( exp ` A ) ) = ( log ` B ) ) |
41 |
40
|
oveq1d |
|- ( ( exp ` A ) = B -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
42 |
41
|
eqeq2d |
|- ( ( exp ` A ) = B -> ( A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
43 |
42
|
rexbidv |
|- ( ( exp ` A ) = B -> ( E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
44 |
39 43
|
syl5ibcom |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B -> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
45 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
46 |
45
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
47 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
48 |
47
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> n e. CC ) |
49 |
|
mulcl |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ n e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
50 |
20 48 49
|
sylancr |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
51 |
|
efadd |
|- ( ( ( log ` B ) e. CC /\ ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
52 |
46 50 51
|
syl2an2r |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
53 |
|
eflog |
|- ( ( B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
54 |
53
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
55 |
|
ef2kpi |
|- ( n e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = 1 ) |
56 |
54 55
|
oveqan12d |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( B x. 1 ) ) |
57 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> B e. CC ) |
58 |
57
|
mulid1d |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( B x. 1 ) = B ) |
59 |
52 56 58
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) |
60 |
|
fveqeq2 |
|- ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( ( exp ` A ) = B <-> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) ) |
61 |
59 60
|
syl5ibrcom |
|- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
62 |
61
|
rexlimdva |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
63 |
44 62
|
impbid |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |