| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlslem3.p |
|- P = ( I mPoly R ) |
| 2 |
|
evlslem3.b |
|- B = ( Base ` P ) |
| 3 |
|
evlslem3.c |
|- C = ( Base ` S ) |
| 4 |
|
evlslem3.k |
|- K = ( Base ` R ) |
| 5 |
|
evlslem3.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 6 |
|
evlslem3.t |
|- T = ( mulGrp ` S ) |
| 7 |
|
evlslem3.x |
|- .^ = ( .g ` T ) |
| 8 |
|
evlslem3.m |
|- .x. = ( .r ` S ) |
| 9 |
|
evlslem3.v |
|- V = ( I mVar R ) |
| 10 |
|
evlslem3.e |
|- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 11 |
|
evlslem3.i |
|- ( ph -> I e. W ) |
| 12 |
|
evlslem3.r |
|- ( ph -> R e. CRing ) |
| 13 |
|
evlslem3.s |
|- ( ph -> S e. CRing ) |
| 14 |
|
evlslem3.f |
|- ( ph -> F e. ( R RingHom S ) ) |
| 15 |
|
evlslem3.g |
|- ( ph -> G : I --> C ) |
| 16 |
|
evlslem3.z |
|- .0. = ( 0g ` R ) |
| 17 |
|
evlslem3.a |
|- ( ph -> A e. D ) |
| 18 |
|
evlslem3.q |
|- ( ph -> H e. K ) |
| 19 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 20 |
12 19
|
syl |
|- ( ph -> R e. Ring ) |
| 21 |
1 5 16 4 11 20 2 18 17
|
mplmon2cl |
|- ( ph -> ( x e. D |-> if ( x = A , H , .0. ) ) e. B ) |
| 22 |
|
fveq1 |
|- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( p ` b ) = ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) |
| 23 |
22
|
fveq2d |
|- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( F ` ( p ` b ) ) = ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) ) |
| 24 |
23
|
oveq1d |
|- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 25 |
24
|
mpteq2dv |
|- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 26 |
25
|
oveq2d |
|- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 27 |
|
ovex |
|- ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
| 28 |
26 10 27
|
fvmpt |
|- ( ( x e. D |-> if ( x = A , H , .0. ) ) e. B -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 29 |
21 28
|
syl |
|- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 30 |
|
eqid |
|- ( x e. D |-> if ( x = A , H , .0. ) ) = ( x e. D |-> if ( x = A , H , .0. ) ) |
| 31 |
|
eqeq1 |
|- ( x = b -> ( x = A <-> b = A ) ) |
| 32 |
31
|
ifbid |
|- ( x = b -> if ( x = A , H , .0. ) = if ( b = A , H , .0. ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ b e. D ) -> b e. D ) |
| 34 |
16
|
fvexi |
|- .0. e. _V |
| 35 |
34
|
a1i |
|- ( ph -> .0. e. _V ) |
| 36 |
18 35
|
ifexd |
|- ( ph -> if ( b = A , H , .0. ) e. _V ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ b e. D ) -> if ( b = A , H , .0. ) e. _V ) |
| 38 |
30 32 33 37
|
fvmptd3 |
|- ( ( ph /\ b e. D ) -> ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) = if ( b = A , H , .0. ) ) |
| 39 |
38
|
fveq2d |
|- ( ( ph /\ b e. D ) -> ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) = ( F ` if ( b = A , H , .0. ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ( ph /\ b e. D ) -> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 41 |
40
|
mpteq2dva |
|- ( ph -> ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 42 |
41
|
oveq2d |
|- ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 43 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 44 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
| 45 |
13 44
|
syl |
|- ( ph -> S e. Ring ) |
| 46 |
|
ringmnd |
|- ( S e. Ring -> S e. Mnd ) |
| 47 |
45 46
|
syl |
|- ( ph -> S e. Mnd ) |
| 48 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 49 |
5 48
|
rabex2 |
|- D e. _V |
| 50 |
49
|
a1i |
|- ( ph -> D e. _V ) |
| 51 |
45
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. Ring ) |
| 52 |
4 3
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : K --> C ) |
| 53 |
14 52
|
syl |
|- ( ph -> F : K --> C ) |
| 54 |
4 16
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
| 55 |
20 54
|
syl |
|- ( ph -> .0. e. K ) |
| 56 |
18 55
|
ifcld |
|- ( ph -> if ( b = A , H , .0. ) e. K ) |
| 57 |
53 56
|
ffvelcdmd |
|- ( ph -> ( F ` if ( b = A , H , .0. ) ) e. C ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ b e. D ) -> ( F ` if ( b = A , H , .0. ) ) e. C ) |
| 59 |
6 3
|
mgpbas |
|- C = ( Base ` T ) |
| 60 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 61 |
6
|
crngmgp |
|- ( S e. CRing -> T e. CMnd ) |
| 62 |
13 61
|
syl |
|- ( ph -> T e. CMnd ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ b e. D ) -> T e. CMnd ) |
| 64 |
11
|
adantr |
|- ( ( ph /\ b e. D ) -> I e. W ) |
| 65 |
|
cmnmnd |
|- ( T e. CMnd -> T e. Mnd ) |
| 66 |
62 65
|
syl |
|- ( ph -> T e. Mnd ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> T e. Mnd ) |
| 68 |
|
simprl |
|- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> y e. NN0 ) |
| 69 |
|
simprr |
|- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> z e. C ) |
| 70 |
59 7 67 68 69
|
mulgnn0cld |
|- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> ( y .^ z ) e. C ) |
| 71 |
5
|
psrbagf |
|- ( b e. D -> b : I --> NN0 ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ b e. D ) -> b : I --> NN0 ) |
| 73 |
15
|
adantr |
|- ( ( ph /\ b e. D ) -> G : I --> C ) |
| 74 |
|
inidm |
|- ( I i^i I ) = I |
| 75 |
70 72 73 64 64 74
|
off |
|- ( ( ph /\ b e. D ) -> ( b oF .^ G ) : I --> C ) |
| 76 |
|
ovex |
|- ( b oF .^ G ) e. _V |
| 77 |
76
|
a1i |
|- ( ( ph /\ b e. D ) -> ( b oF .^ G ) e. _V ) |
| 78 |
75
|
ffund |
|- ( ( ph /\ b e. D ) -> Fun ( b oF .^ G ) ) |
| 79 |
|
fvexd |
|- ( ( ph /\ b e. D ) -> ( 0g ` T ) e. _V ) |
| 80 |
5
|
psrbag |
|- ( I e. W -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) ) |
| 81 |
11 80
|
syl |
|- ( ph -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) ) |
| 82 |
81
|
simplbda |
|- ( ( ph /\ b e. D ) -> ( `' b " NN ) e. Fin ) |
| 83 |
72
|
ffnd |
|- ( ( ph /\ b e. D ) -> b Fn I ) |
| 84 |
83
|
adantr |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> b Fn I ) |
| 85 |
15
|
ffnd |
|- ( ph -> G Fn I ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> G Fn I ) |
| 87 |
11
|
ad2antrr |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> I e. W ) |
| 88 |
|
eldifi |
|- ( y e. ( I \ ( `' b " NN ) ) -> y e. I ) |
| 89 |
88
|
adantl |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> y e. I ) |
| 90 |
|
fnfvof |
|- ( ( ( b Fn I /\ G Fn I ) /\ ( I e. W /\ y e. I ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) ) |
| 91 |
84 86 87 89 90
|
syl22anc |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) ) |
| 92 |
|
ffvelcdm |
|- ( ( b : I --> NN0 /\ y e. I ) -> ( b ` y ) e. NN0 ) |
| 93 |
72 88 92
|
syl2an |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) e. NN0 ) |
| 94 |
|
elnn0 |
|- ( ( b ` y ) e. NN0 <-> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) ) |
| 95 |
93 94
|
sylib |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) ) |
| 96 |
|
eldifn |
|- ( y e. ( I \ ( `' b " NN ) ) -> -. y e. ( `' b " NN ) ) |
| 97 |
96
|
adantl |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. y e. ( `' b " NN ) ) |
| 98 |
83
|
ad2antrr |
|- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> b Fn I ) |
| 99 |
88
|
ad2antlr |
|- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. I ) |
| 100 |
|
simpr |
|- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> ( b ` y ) e. NN ) |
| 101 |
98 99 100
|
elpreimad |
|- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. ( `' b " NN ) ) |
| 102 |
97 101
|
mtand |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. ( b ` y ) e. NN ) |
| 103 |
95 102
|
orcnd |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) = 0 ) |
| 104 |
103
|
oveq1d |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) .^ ( G ` y ) ) = ( 0 .^ ( G ` y ) ) ) |
| 105 |
|
ffvelcdm |
|- ( ( G : I --> C /\ y e. I ) -> ( G ` y ) e. C ) |
| 106 |
73 88 105
|
syl2an |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( G ` y ) e. C ) |
| 107 |
59 60 7
|
mulg0 |
|- ( ( G ` y ) e. C -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) ) |
| 108 |
106 107
|
syl |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) ) |
| 109 |
91 104 108
|
3eqtrd |
|- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( 0g ` T ) ) |
| 110 |
75 109
|
suppss |
|- ( ( ph /\ b e. D ) -> ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) ) |
| 111 |
|
suppssfifsupp |
|- ( ( ( ( b oF .^ G ) e. _V /\ Fun ( b oF .^ G ) /\ ( 0g ` T ) e. _V ) /\ ( ( `' b " NN ) e. Fin /\ ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) ) ) -> ( b oF .^ G ) finSupp ( 0g ` T ) ) |
| 112 |
77 78 79 82 110 111
|
syl32anc |
|- ( ( ph /\ b e. D ) -> ( b oF .^ G ) finSupp ( 0g ` T ) ) |
| 113 |
59 60 63 64 75 112
|
gsumcl |
|- ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 114 |
3 8
|
ringcl |
|- ( ( S e. Ring /\ ( F ` if ( b = A , H , .0. ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 115 |
51 58 113 114
|
syl3anc |
|- ( ( ph /\ b e. D ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 116 |
115
|
fmpttd |
|- ( ph -> ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 117 |
|
eldifsnneq |
|- ( b e. ( D \ { A } ) -> -. b = A ) |
| 118 |
117
|
iffalsed |
|- ( b e. ( D \ { A } ) -> if ( b = A , H , .0. ) = .0. ) |
| 119 |
118
|
adantl |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> if ( b = A , H , .0. ) = .0. ) |
| 120 |
119
|
fveq2d |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( F ` .0. ) ) |
| 121 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
| 122 |
14 121
|
syl |
|- ( ph -> F e. ( R GrpHom S ) ) |
| 123 |
16 43
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` .0. ) = ( 0g ` S ) ) |
| 124 |
122 123
|
syl |
|- ( ph -> ( F ` .0. ) = ( 0g ` S ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` .0. ) = ( 0g ` S ) ) |
| 126 |
120 125
|
eqtrd |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( 0g ` S ) ) |
| 127 |
126
|
oveq1d |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 128 |
45
|
adantr |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> S e. Ring ) |
| 129 |
|
eldifi |
|- ( b e. ( D \ { A } ) -> b e. D ) |
| 130 |
129 113
|
sylan2 |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 131 |
3 8 43
|
ringlz |
|- ( ( S e. Ring /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 132 |
128 130 131
|
syl2anc |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 133 |
127 132
|
eqtrd |
|- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 134 |
133 50
|
suppss2 |
|- ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ { A } ) |
| 135 |
3 43 47 50 17 116 134
|
gsumpt |
|- ( ph -> ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) ) |
| 136 |
42 135
|
eqtrd |
|- ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) ) |
| 137 |
|
iftrue |
|- ( b = A -> if ( b = A , H , .0. ) = H ) |
| 138 |
137
|
fveq2d |
|- ( b = A -> ( F ` if ( b = A , H , .0. ) ) = ( F ` H ) ) |
| 139 |
|
oveq1 |
|- ( b = A -> ( b oF .^ G ) = ( A oF .^ G ) ) |
| 140 |
139
|
oveq2d |
|- ( b = A -> ( T gsum ( b oF .^ G ) ) = ( T gsum ( A oF .^ G ) ) ) |
| 141 |
138 140
|
oveq12d |
|- ( b = A -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 142 |
|
eqid |
|- ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 143 |
|
ovex |
|- ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) e. _V |
| 144 |
141 142 143
|
fvmpt |
|- ( A e. D -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 145 |
17 144
|
syl |
|- ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 146 |
29 136 145
|
3eqtrd |
|- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |