| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin1a2lem.b |
|- E = ( x e. _om |-> ( 2o .o x ) ) |
| 2 |
|
fin1a2lem.aa |
|- S = ( x e. On |-> suc x ) |
| 3 |
2
|
fin1a2lem2 |
|- S : On -1-1-> On |
| 4 |
1
|
fin1a2lem4 |
|- E : _om -1-1-> _om |
| 5 |
|
f1f |
|- ( E : _om -1-1-> _om -> E : _om --> _om ) |
| 6 |
|
frn |
|- ( E : _om --> _om -> ran E C_ _om ) |
| 7 |
|
omsson |
|- _om C_ On |
| 8 |
6 7
|
sstrdi |
|- ( E : _om --> _om -> ran E C_ On ) |
| 9 |
4 5 8
|
mp2b |
|- ran E C_ On |
| 10 |
|
f1ores |
|- ( ( S : On -1-1-> On /\ ran E C_ On ) -> ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) ) |
| 11 |
3 9 10
|
mp2an |
|- ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) |
| 12 |
9
|
sseli |
|- ( b e. ran E -> b e. On ) |
| 13 |
2
|
fin1a2lem1 |
|- ( b e. On -> ( S ` b ) = suc b ) |
| 14 |
12 13
|
syl |
|- ( b e. ran E -> ( S ` b ) = suc b ) |
| 15 |
14
|
eqeq1d |
|- ( b e. ran E -> ( ( S ` b ) = a <-> suc b = a ) ) |
| 16 |
15
|
rexbiia |
|- ( E. b e. ran E ( S ` b ) = a <-> E. b e. ran E suc b = a ) |
| 17 |
4 5 6
|
mp2b |
|- ran E C_ _om |
| 18 |
17
|
sseli |
|- ( b e. ran E -> b e. _om ) |
| 19 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
| 20 |
18 19
|
syl |
|- ( b e. ran E -> suc b e. _om ) |
| 21 |
1
|
fin1a2lem5 |
|- ( b e. _om -> ( b e. ran E <-> -. suc b e. ran E ) ) |
| 22 |
21
|
biimpd |
|- ( b e. _om -> ( b e. ran E -> -. suc b e. ran E ) ) |
| 23 |
18 22
|
mpcom |
|- ( b e. ran E -> -. suc b e. ran E ) |
| 24 |
20 23
|
jca |
|- ( b e. ran E -> ( suc b e. _om /\ -. suc b e. ran E ) ) |
| 25 |
|
eleq1 |
|- ( suc b = a -> ( suc b e. _om <-> a e. _om ) ) |
| 26 |
|
eleq1 |
|- ( suc b = a -> ( suc b e. ran E <-> a e. ran E ) ) |
| 27 |
26
|
notbid |
|- ( suc b = a -> ( -. suc b e. ran E <-> -. a e. ran E ) ) |
| 28 |
25 27
|
anbi12d |
|- ( suc b = a -> ( ( suc b e. _om /\ -. suc b e. ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) ) |
| 29 |
24 28
|
syl5ibcom |
|- ( b e. ran E -> ( suc b = a -> ( a e. _om /\ -. a e. ran E ) ) ) |
| 30 |
29
|
rexlimiv |
|- ( E. b e. ran E suc b = a -> ( a e. _om /\ -. a e. ran E ) ) |
| 31 |
|
peano1 |
|- (/) e. _om |
| 32 |
1
|
fin1a2lem3 |
|- ( (/) e. _om -> ( E ` (/) ) = ( 2o .o (/) ) ) |
| 33 |
31 32
|
ax-mp |
|- ( E ` (/) ) = ( 2o .o (/) ) |
| 34 |
|
2on |
|- 2o e. On |
| 35 |
|
om0 |
|- ( 2o e. On -> ( 2o .o (/) ) = (/) ) |
| 36 |
34 35
|
ax-mp |
|- ( 2o .o (/) ) = (/) |
| 37 |
33 36
|
eqtri |
|- ( E ` (/) ) = (/) |
| 38 |
|
f1fun |
|- ( E : _om -1-1-> _om -> Fun E ) |
| 39 |
4 38
|
ax-mp |
|- Fun E |
| 40 |
|
f1dm |
|- ( E : _om -1-1-> _om -> dom E = _om ) |
| 41 |
4 40
|
ax-mp |
|- dom E = _om |
| 42 |
31 41
|
eleqtrri |
|- (/) e. dom E |
| 43 |
|
fvelrn |
|- ( ( Fun E /\ (/) e. dom E ) -> ( E ` (/) ) e. ran E ) |
| 44 |
39 42 43
|
mp2an |
|- ( E ` (/) ) e. ran E |
| 45 |
37 44
|
eqeltrri |
|- (/) e. ran E |
| 46 |
|
eleq1 |
|- ( a = (/) -> ( a e. ran E <-> (/) e. ran E ) ) |
| 47 |
45 46
|
mpbiri |
|- ( a = (/) -> a e. ran E ) |
| 48 |
47
|
necon3bi |
|- ( -. a e. ran E -> a =/= (/) ) |
| 49 |
|
nnsuc |
|- ( ( a e. _om /\ a =/= (/) ) -> E. b e. _om a = suc b ) |
| 50 |
48 49
|
sylan2 |
|- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. _om a = suc b ) |
| 51 |
|
eleq1 |
|- ( a = suc b -> ( a e. _om <-> suc b e. _om ) ) |
| 52 |
|
eleq1 |
|- ( a = suc b -> ( a e. ran E <-> suc b e. ran E ) ) |
| 53 |
52
|
notbid |
|- ( a = suc b -> ( -. a e. ran E <-> -. suc b e. ran E ) ) |
| 54 |
51 53
|
anbi12d |
|- ( a = suc b -> ( ( a e. _om /\ -. a e. ran E ) <-> ( suc b e. _om /\ -. suc b e. ran E ) ) ) |
| 55 |
54
|
anbi1d |
|- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) <-> ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) ) ) |
| 56 |
|
simplr |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> -. suc b e. ran E ) |
| 57 |
21
|
adantl |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> ( b e. ran E <-> -. suc b e. ran E ) ) |
| 58 |
56 57
|
mpbird |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> b e. ran E ) |
| 59 |
55 58
|
biimtrdi |
|- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> b e. ran E ) ) |
| 60 |
59
|
com12 |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> ( a = suc b -> b e. ran E ) ) |
| 61 |
60
|
impr |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> b e. ran E ) |
| 62 |
|
simprr |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> a = suc b ) |
| 63 |
62
|
eqcomd |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> suc b = a ) |
| 64 |
50 61 63
|
reximssdv |
|- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. ran E suc b = a ) |
| 65 |
30 64
|
impbii |
|- ( E. b e. ran E suc b = a <-> ( a e. _om /\ -. a e. ran E ) ) |
| 66 |
16 65
|
bitri |
|- ( E. b e. ran E ( S ` b ) = a <-> ( a e. _om /\ -. a e. ran E ) ) |
| 67 |
|
f1fn |
|- ( S : On -1-1-> On -> S Fn On ) |
| 68 |
3 67
|
ax-mp |
|- S Fn On |
| 69 |
|
fvelimab |
|- ( ( S Fn On /\ ran E C_ On ) -> ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) ) |
| 70 |
68 9 69
|
mp2an |
|- ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) |
| 71 |
|
eldif |
|- ( a e. ( _om \ ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) |
| 72 |
66 70 71
|
3bitr4i |
|- ( a e. ( S " ran E ) <-> a e. ( _om \ ran E ) ) |
| 73 |
72
|
eqriv |
|- ( S " ran E ) = ( _om \ ran E ) |
| 74 |
|
f1oeq3 |
|- ( ( S " ran E ) = ( _om \ ran E ) -> ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) ) |
| 75 |
73 74
|
ax-mp |
|- ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) |
| 76 |
11 75
|
mpbi |
|- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |