| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem59.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem59.x |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem59.a |
|- ( ph -> A e. RR ) |
| 4 |
|
fourierdlem59.b |
|- ( ph -> B e. RR ) |
| 5 |
|
fourierdlem59.n0 |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
| 6 |
|
fourierdlem59.fdv |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) |
| 7 |
|
fourierdlem59.c |
|- ( ph -> C e. RR ) |
| 8 |
|
fourierdlem59.h |
|- H = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> F : RR --> RR ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
| 11 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
| 13 |
10 12
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
| 14 |
9 13
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. RR ) |
| 15 |
7
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. RR ) |
| 16 |
14 15
|
resubcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. RR ) |
| 17 |
|
eqcom |
|- ( s = 0 <-> 0 = s ) |
| 18 |
17
|
biimpi |
|- ( s = 0 -> 0 = s ) |
| 19 |
18
|
adantl |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> 0 = s ) |
| 20 |
|
simpl |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> s e. ( A (,) B ) ) |
| 21 |
19 20
|
eqeltrd |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> 0 e. ( A (,) B ) ) |
| 22 |
21
|
adantll |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ s = 0 ) -> 0 e. ( A (,) B ) ) |
| 23 |
5
|
ad2antrr |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ s = 0 ) -> -. 0 e. ( A (,) B ) ) |
| 24 |
22 23
|
pm2.65da |
|- ( ( ph /\ s e. ( A (,) B ) ) -> -. s = 0 ) |
| 25 |
24
|
neqned |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s =/= 0 ) |
| 26 |
16 12 25
|
redivcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. RR ) |
| 27 |
26 8
|
fmptd |
|- ( ph -> H : ( A (,) B ) --> RR ) |
| 28 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 29 |
28
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 30 |
|
dvfre |
|- ( ( H : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D H ) : dom ( RR _D H ) --> RR ) |
| 31 |
27 29 30
|
syl2anc |
|- ( ph -> ( RR _D H ) : dom ( RR _D H ) --> RR ) |
| 32 |
|
ovex |
|- ( A (,) B ) e. _V |
| 33 |
32
|
a1i |
|- ( ph -> ( A (,) B ) e. _V ) |
| 34 |
|
eqidd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) = ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) |
| 35 |
|
eqidd |
|- ( ph -> ( s e. ( A (,) B ) |-> s ) = ( s e. ( A (,) B ) |-> s ) ) |
| 36 |
33 16 12 34 35
|
offval2 |
|- ( ph -> ( ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) oF / ( s e. ( A (,) B ) |-> s ) ) = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) ) |
| 37 |
8 36
|
eqtr4id |
|- ( ph -> H = ( ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) oF / ( s e. ( A (,) B ) |-> s ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( RR _D H ) = ( RR _D ( ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) oF / ( s e. ( A (,) B ) |-> s ) ) ) ) |
| 39 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 40 |
39
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 41 |
16
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
| 42 |
|
eqid |
|- ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) = ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) |
| 43 |
41 42
|
fmptd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) : ( A (,) B ) --> CC ) |
| 44 |
12
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC ) |
| 45 |
|
eldifsn |
|- ( s e. ( CC \ { 0 } ) <-> ( s e. CC /\ s =/= 0 ) ) |
| 46 |
44 25 45
|
sylanbrc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( CC \ { 0 } ) ) |
| 47 |
|
eqid |
|- ( s e. ( A (,) B ) |-> s ) = ( s e. ( A (,) B ) |-> s ) |
| 48 |
46 47
|
fmptd |
|- ( ph -> ( s e. ( A (,) B ) |-> s ) : ( A (,) B ) --> ( CC \ { 0 } ) ) |
| 49 |
|
eqidd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) = ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) |
| 50 |
|
eqidd |
|- ( ph -> ( s e. ( A (,) B ) |-> C ) = ( s e. ( A (,) B ) |-> C ) ) |
| 51 |
33 14 15 49 50
|
offval2 |
|- ( ph -> ( ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) oF - ( s e. ( A (,) B ) |-> C ) ) = ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) |
| 52 |
51
|
eqcomd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) = ( ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) oF - ( s e. ( A (,) B ) |-> C ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( RR _D ( ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) oF - ( s e. ( A (,) B ) |-> C ) ) ) ) |
| 54 |
14
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. CC ) |
| 55 |
|
eqid |
|- ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) = ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) |
| 56 |
54 55
|
fmptd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) : ( A (,) B ) --> CC ) |
| 57 |
15
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. CC ) |
| 58 |
|
eqid |
|- ( s e. ( A (,) B ) |-> C ) = ( s e. ( A (,) B ) |-> C ) |
| 59 |
57 58
|
fmptd |
|- ( ph -> ( s e. ( A (,) B ) |-> C ) : ( A (,) B ) --> CC ) |
| 60 |
|
eqid |
|- ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
| 61 |
|
cncff |
|- ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 62 |
6 61
|
syl |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 63 |
1 2 3 4 60 62
|
fourierdlem28 |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 64 |
|
ioosscn |
|- ( ( X + A ) (,) ( X + B ) ) C_ CC |
| 65 |
64
|
a1i |
|- ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ CC ) |
| 66 |
|
ax-resscn |
|- RR C_ CC |
| 67 |
66
|
a1i |
|- ( ph -> RR C_ CC ) |
| 68 |
62 67
|
fssd |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> CC ) |
| 69 |
|
ssid |
|- CC C_ CC |
| 70 |
69
|
a1i |
|- ( ph -> CC C_ CC ) |
| 71 |
|
cncfcdm |
|- ( ( CC C_ CC /\ ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> CC ) <-> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> CC ) ) |
| 72 |
70 6 71
|
syl2anc |
|- ( ph -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> CC ) <-> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> CC ) ) |
| 73 |
68 72
|
mpbird |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> CC ) ) |
| 74 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
| 75 |
74
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
| 76 |
2
|
recnd |
|- ( ph -> X e. CC ) |
| 77 |
2 3
|
readdcld |
|- ( ph -> ( X + A ) e. RR ) |
| 78 |
77
|
rexrd |
|- ( ph -> ( X + A ) e. RR* ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) e. RR* ) |
| 80 |
2 4
|
readdcld |
|- ( ph -> ( X + B ) e. RR ) |
| 81 |
80
|
rexrd |
|- ( ph -> ( X + B ) e. RR* ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + B ) e. RR* ) |
| 83 |
3
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR ) |
| 84 |
83
|
rexrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR* ) |
| 85 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR* ) |
| 87 |
|
simpr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A (,) B ) ) |
| 88 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> A < s ) |
| 89 |
84 86 87 88
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A < s ) |
| 90 |
83 12 10 89
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) < ( X + s ) ) |
| 91 |
4
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR ) |
| 92 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> s < B ) |
| 93 |
84 86 87 92
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s < B ) |
| 94 |
12 91 10 93
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) < ( X + B ) ) |
| 95 |
79 82 13 90 94
|
eliood |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) |
| 96 |
65 73 75 76 95
|
fourierdlem23 |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 97 |
63 96
|
eqeltrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 98 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 99 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 100 |
98 99
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 101 |
100
|
a1i |
|- ( ph -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 102 |
7
|
recnd |
|- ( ph -> C e. CC ) |
| 103 |
40 101 102
|
dvmptconst |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> C ) ) = ( s e. ( A (,) B ) |-> 0 ) ) |
| 104 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 105 |
75 104 70
|
constcncfg |
|- ( ph -> ( s e. ( A (,) B ) |-> 0 ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 106 |
103 105
|
eqeltrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> C ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 107 |
40 56 59 97 106
|
dvsubcncf |
|- ( ph -> ( RR _D ( ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) oF - ( s e. ( A (,) B ) |-> C ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 108 |
53 107
|
eqeltrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 109 |
40 101
|
dvmptidg |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> s ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
| 110 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 111 |
75 110 70
|
constcncfg |
|- ( ph -> ( s e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 112 |
109 111
|
eqeltrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> s ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 113 |
40 43 48 108 112
|
dvdivcncf |
|- ( ph -> ( RR _D ( ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) oF / ( s e. ( A (,) B ) |-> s ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 114 |
38 113
|
eqeltrd |
|- ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 115 |
|
cncff |
|- ( ( RR _D H ) e. ( ( A (,) B ) -cn-> CC ) -> ( RR _D H ) : ( A (,) B ) --> CC ) |
| 116 |
|
fdm |
|- ( ( RR _D H ) : ( A (,) B ) --> CC -> dom ( RR _D H ) = ( A (,) B ) ) |
| 117 |
114 115 116
|
3syl |
|- ( ph -> dom ( RR _D H ) = ( A (,) B ) ) |
| 118 |
117
|
feq2d |
|- ( ph -> ( ( RR _D H ) : dom ( RR _D H ) --> RR <-> ( RR _D H ) : ( A (,) B ) --> RR ) ) |
| 119 |
31 118
|
mpbid |
|- ( ph -> ( RR _D H ) : ( A (,) B ) --> RR ) |
| 120 |
|
cncfcdm |
|- ( ( RR C_ CC /\ ( RR _D H ) e. ( ( A (,) B ) -cn-> CC ) ) -> ( ( RR _D H ) e. ( ( A (,) B ) -cn-> RR ) <-> ( RR _D H ) : ( A (,) B ) --> RR ) ) |
| 121 |
67 114 120
|
syl2anc |
|- ( ph -> ( ( RR _D H ) e. ( ( A (,) B ) -cn-> RR ) <-> ( RR _D H ) : ( A (,) B ) --> RR ) ) |
| 122 |
119 121
|
mpbird |
|- ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> RR ) ) |