| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem77.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem77.x |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem77.y |
|- ( ph -> Y e. RR ) |
| 4 |
|
fourierdlem77.w |
|- ( ph -> W e. RR ) |
| 5 |
|
fourierdlem77.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
| 6 |
|
fourierdlem77.k |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 7 |
|
fourierdlem77.u |
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
| 8 |
|
fourierdlem77.bd |
|- ( ph -> E. a e. RR A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) |
| 9 |
|
pire |
|- _pi e. RR |
| 10 |
9
|
renegcli |
|- -u _pi e. RR |
| 11 |
10
|
a1i |
|- ( T. -> -u _pi e. RR ) |
| 12 |
9
|
a1i |
|- ( T. -> _pi e. RR ) |
| 13 |
|
pirp |
|- _pi e. RR+ |
| 14 |
|
neglt |
|- ( _pi e. RR+ -> -u _pi < _pi ) |
| 15 |
13 14
|
ax-mp |
|- -u _pi < _pi |
| 16 |
10 9 15
|
ltleii |
|- -u _pi <_ _pi |
| 17 |
16
|
a1i |
|- ( T. -> -u _pi <_ _pi ) |
| 18 |
6
|
fourierdlem62 |
|- K e. ( ( -u _pi [,] _pi ) -cn-> RR ) |
| 19 |
18
|
a1i |
|- ( T. -> K e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
| 20 |
11 12 17 19
|
evthiccabs |
|- ( T. -> ( E. c e. ( -u _pi [,] _pi ) A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) /\ E. x e. ( -u _pi [,] _pi ) A. y e. ( -u _pi [,] _pi ) ( abs ` ( K ` x ) ) <_ ( abs ` ( K ` y ) ) ) ) |
| 21 |
20
|
mptru |
|- ( E. c e. ( -u _pi [,] _pi ) A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) /\ E. x e. ( -u _pi [,] _pi ) A. y e. ( -u _pi [,] _pi ) ( abs ` ( K ` x ) ) <_ ( abs ` ( K ` y ) ) ) |
| 22 |
21
|
simpli |
|- E. c e. ( -u _pi [,] _pi ) A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) |
| 23 |
22
|
a1i |
|- ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) -> E. c e. ( -u _pi [,] _pi ) A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) |
| 24 |
|
simpl |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> a e. RR ) |
| 25 |
6
|
fourierdlem43 |
|- K : ( -u _pi [,] _pi ) --> RR |
| 26 |
25
|
ffvelcdmi |
|- ( c e. ( -u _pi [,] _pi ) -> ( K ` c ) e. RR ) |
| 27 |
26
|
adantl |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( K ` c ) e. RR ) |
| 28 |
24 27
|
remulcld |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( a x. ( K ` c ) ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( a x. ( K ` c ) ) e. CC ) |
| 30 |
29
|
abscld |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( abs ` ( a x. ( K ` c ) ) ) e. RR ) |
| 31 |
29
|
absge0d |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> 0 <_ ( abs ` ( a x. ( K ` c ) ) ) ) |
| 32 |
30 31
|
ge0p1rpd |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR+ ) |
| 33 |
32
|
3ad2antl2 |
|- ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) -> ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR+ ) |
| 34 |
33
|
3adant3 |
|- ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) -> ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR+ ) |
| 35 |
|
nfv |
|- F/ s ph |
| 36 |
|
nfv |
|- F/ s a e. RR |
| 37 |
|
nfra1 |
|- F/ s A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a |
| 38 |
35 36 37
|
nf3an |
|- F/ s ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) |
| 39 |
|
nfv |
|- F/ s c e. ( -u _pi [,] _pi ) |
| 40 |
|
nfra1 |
|- F/ s A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) |
| 41 |
38 39 40
|
nf3an |
|- F/ s ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) |
| 42 |
|
simpl11 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ph ) |
| 43 |
|
simpl12 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> a e. RR ) |
| 44 |
42 43
|
jca |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ph /\ a e. RR ) ) |
| 45 |
|
simpl13 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) |
| 46 |
|
rspa |
|- ( ( A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) <_ a ) |
| 47 |
45 46
|
sylancom |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) <_ a ) |
| 48 |
|
simpl2 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> c e. ( -u _pi [,] _pi ) ) |
| 49 |
44 47 48
|
jca31 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) ) |
| 50 |
|
rspa |
|- ( ( A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) |
| 51 |
50
|
3ad2antl3 |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) |
| 52 |
|
simpr |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> s e. ( -u _pi [,] _pi ) ) |
| 53 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ph ) |
| 54 |
|
simpr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> s e. ( -u _pi [,] _pi ) ) |
| 55 |
1 2 3 4 5
|
fourierdlem9 |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |
| 56 |
55
|
ffvelcdmda |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( H ` s ) e. RR ) |
| 57 |
25
|
ffvelcdmi |
|- ( s e. ( -u _pi [,] _pi ) -> ( K ` s ) e. RR ) |
| 58 |
57
|
adantl |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( K ` s ) e. RR ) |
| 59 |
56 58
|
remulcld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( ( H ` s ) x. ( K ` s ) ) e. RR ) |
| 60 |
7
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( ( H ` s ) x. ( K ` s ) ) e. RR ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
| 61 |
54 59 60
|
syl2anc |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
| 62 |
61 59
|
eqeltrd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( U ` s ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( U ` s ) e. CC ) |
| 64 |
63
|
abscld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) e. RR ) |
| 65 |
53 64
|
sylancom |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) e. RR ) |
| 66 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> a e. RR ) |
| 67 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> c e. ( -u _pi [,] _pi ) ) |
| 68 |
66 67 30
|
syl2anc |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( a x. ( K ` c ) ) ) e. RR ) |
| 69 |
|
peano2re |
|- ( ( abs ` ( a x. ( K ` c ) ) ) e. RR -> ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR ) |
| 70 |
68 69
|
syl |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR ) |
| 71 |
61
|
fveq2d |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) = ( abs ` ( ( H ` s ) x. ( K ` s ) ) ) ) |
| 72 |
53 71
|
sylancom |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) = ( abs ` ( ( H ` s ) x. ( K ` s ) ) ) ) |
| 73 |
56
|
recnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( H ` s ) e. CC ) |
| 74 |
73
|
abscld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) e. RR ) |
| 75 |
53 74
|
sylancom |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) e. RR ) |
| 76 |
|
recn |
|- ( a e. RR -> a e. CC ) |
| 77 |
76
|
abscld |
|- ( a e. RR -> ( abs ` a ) e. RR ) |
| 78 |
66 77
|
syl |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` a ) e. RR ) |
| 79 |
57
|
recnd |
|- ( s e. ( -u _pi [,] _pi ) -> ( K ` s ) e. CC ) |
| 80 |
79
|
abscld |
|- ( s e. ( -u _pi [,] _pi ) -> ( abs ` ( K ` s ) ) e. RR ) |
| 81 |
80
|
adantl |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( K ` s ) ) e. RR ) |
| 82 |
26
|
recnd |
|- ( c e. ( -u _pi [,] _pi ) -> ( K ` c ) e. CC ) |
| 83 |
82
|
abscld |
|- ( c e. ( -u _pi [,] _pi ) -> ( abs ` ( K ` c ) ) e. RR ) |
| 84 |
67 83
|
syl |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( K ` c ) ) e. RR ) |
| 85 |
73
|
absge0d |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> 0 <_ ( abs ` ( H ` s ) ) ) |
| 86 |
53 85
|
sylancom |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> 0 <_ ( abs ` ( H ` s ) ) ) |
| 87 |
82
|
absge0d |
|- ( c e. ( -u _pi [,] _pi ) -> 0 <_ ( abs ` ( K ` c ) ) ) |
| 88 |
67 87
|
syl |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> 0 <_ ( abs ` ( K ` c ) ) ) |
| 89 |
74
|
ad4ant14 |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) e. RR ) |
| 90 |
|
simpllr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> a e. RR ) |
| 91 |
77
|
ad3antlr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` a ) e. RR ) |
| 92 |
|
simplr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) <_ a ) |
| 93 |
90
|
leabsd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> a <_ ( abs ` a ) ) |
| 94 |
89 90 91 92 93
|
letrd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) <_ ( abs ` a ) ) |
| 95 |
94
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( H ` s ) ) <_ ( abs ` a ) ) |
| 96 |
|
simplr |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) |
| 97 |
75 78 81 84 86 88 95 96
|
lemul12bd |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( abs ` ( H ` s ) ) x. ( abs ` ( K ` s ) ) ) <_ ( ( abs ` a ) x. ( abs ` ( K ` c ) ) ) ) |
| 98 |
58
|
recnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( K ` s ) e. CC ) |
| 99 |
73 98
|
absmuld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( ( H ` s ) x. ( K ` s ) ) ) = ( ( abs ` ( H ` s ) ) x. ( abs ` ( K ` s ) ) ) ) |
| 100 |
53 99
|
sylancom |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( ( H ` s ) x. ( K ` s ) ) ) = ( ( abs ` ( H ` s ) ) x. ( abs ` ( K ` s ) ) ) ) |
| 101 |
76
|
adantr |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> a e. CC ) |
| 102 |
27
|
recnd |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( K ` c ) e. CC ) |
| 103 |
101 102
|
absmuld |
|- ( ( a e. RR /\ c e. ( -u _pi [,] _pi ) ) -> ( abs ` ( a x. ( K ` c ) ) ) = ( ( abs ` a ) x. ( abs ` ( K ` c ) ) ) ) |
| 104 |
66 67 103
|
syl2anc |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( a x. ( K ` c ) ) ) = ( ( abs ` a ) x. ( abs ` ( K ` c ) ) ) ) |
| 105 |
97 100 104
|
3brtr4d |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( ( H ` s ) x. ( K ` s ) ) ) <_ ( abs ` ( a x. ( K ` c ) ) ) ) |
| 106 |
72 105
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) <_ ( abs ` ( a x. ( K ` c ) ) ) ) |
| 107 |
68
|
ltp1d |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( a x. ( K ` c ) ) ) < ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) |
| 108 |
65 68 70 106 107
|
lelttrd |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) < ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) |
| 109 |
65 70 108
|
ltled |
|- ( ( ( ( ( ( ph /\ a e. RR ) /\ ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) ) /\ ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) |
| 110 |
49 51 52 109
|
syl21anc |
|- ( ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) /\ s e. ( -u _pi [,] _pi ) ) -> ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) |
| 111 |
110
|
ex |
|- ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) -> ( s e. ( -u _pi [,] _pi ) -> ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) ) |
| 112 |
41 111
|
ralrimi |
|- ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) -> A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) |
| 113 |
|
breq2 |
|- ( b = ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) -> ( ( abs ` ( U ` s ) ) <_ b <-> ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) ) |
| 114 |
113
|
ralbidv |
|- ( b = ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) -> ( A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b <-> A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) ) |
| 115 |
114
|
rspcev |
|- ( ( ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) e. RR+ /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ ( ( abs ` ( a x. ( K ` c ) ) ) + 1 ) ) -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) |
| 116 |
34 112 115
|
syl2anc |
|- ( ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) /\ c e. ( -u _pi [,] _pi ) /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) ) -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) |
| 117 |
116
|
rexlimdv3a |
|- ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) -> ( E. c e. ( -u _pi [,] _pi ) A. s e. ( -u _pi [,] _pi ) ( abs ` ( K ` s ) ) <_ ( abs ` ( K ` c ) ) -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) ) |
| 118 |
23 117
|
mpd |
|- ( ( ph /\ a e. RR /\ A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a ) -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) |
| 119 |
118
|
rexlimdv3a |
|- ( ph -> ( E. a e. RR A. s e. ( -u _pi [,] _pi ) ( abs ` ( H ` s ) ) <_ a -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) ) |
| 120 |
8 119
|
mpd |
|- ( ph -> E. b e. RR+ A. s e. ( -u _pi [,] _pi ) ( abs ` ( U ` s ) ) <_ b ) |