| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem77.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem77.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
fourierdlem77.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 4 |
|
fourierdlem77.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 5 |
|
fourierdlem77.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
| 6 |
|
fourierdlem77.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 7 |
|
fourierdlem77.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 8 |
|
fourierdlem77.bd |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 9 |
|
pire |
⊢ π ∈ ℝ |
| 10 |
9
|
renegcli |
⊢ - π ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( ⊤ → - π ∈ ℝ ) |
| 12 |
9
|
a1i |
⊢ ( ⊤ → π ∈ ℝ ) |
| 13 |
|
pirp |
⊢ π ∈ ℝ+ |
| 14 |
|
neglt |
⊢ ( π ∈ ℝ+ → - π < π ) |
| 15 |
13 14
|
ax-mp |
⊢ - π < π |
| 16 |
10 9 15
|
ltleii |
⊢ - π ≤ π |
| 17 |
16
|
a1i |
⊢ ( ⊤ → - π ≤ π ) |
| 18 |
6
|
fourierdlem62 |
⊢ 𝐾 ∈ ( ( - π [,] π ) –cn→ ℝ ) |
| 19 |
18
|
a1i |
⊢ ( ⊤ → 𝐾 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 20 |
11 12 17 19
|
evthiccabs |
⊢ ( ⊤ → ( ∃ 𝑐 ∈ ( - π [,] π ) ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ∧ ∃ 𝑥 ∈ ( - π [,] π ) ∀ 𝑦 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑦 ) ) ) ) |
| 21 |
20
|
mptru |
⊢ ( ∃ 𝑐 ∈ ( - π [,] π ) ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ∧ ∃ 𝑥 ∈ ( - π [,] π ) ∀ 𝑦 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑦 ) ) ) |
| 22 |
21
|
simpli |
⊢ ∃ 𝑐 ∈ ( - π [,] π ) ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) → ∃ 𝑐 ∈ ( - π [,] π ) ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 24 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → 𝑎 ∈ ℝ ) |
| 25 |
6
|
fourierdlem43 |
⊢ 𝐾 : ( - π [,] π ) ⟶ ℝ |
| 26 |
25
|
ffvelcdmi |
⊢ ( 𝑐 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝑐 ) ∈ ℝ ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( 𝐾 ‘ 𝑐 ) ∈ ℝ ) |
| 28 |
24 27
|
remulcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ∈ ℂ ) |
| 30 |
29
|
abscld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ∈ ℝ ) |
| 31 |
29
|
absge0d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → 0 ≤ ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 32 |
30 31
|
ge0p1rpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ+ ) |
| 33 |
32
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) → ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ+ ) |
| 34 |
33
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) → ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ+ ) |
| 35 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
| 36 |
|
nfv |
⊢ Ⅎ 𝑠 𝑎 ∈ ℝ |
| 37 |
|
nfra1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 |
| 38 |
35 36 37
|
nf3an |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑠 𝑐 ∈ ( - π [,] π ) |
| 40 |
|
nfra1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) |
| 41 |
38 39 40
|
nf3an |
⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 42 |
|
simpl11 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝜑 ) |
| 43 |
|
simpl12 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑎 ∈ ℝ ) |
| 44 |
42 43
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝜑 ∧ 𝑎 ∈ ℝ ) ) |
| 45 |
|
simpl13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 46 |
|
rspa |
⊢ ( ( ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 47 |
45 46
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 48 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑐 ∈ ( - π [,] π ) ) |
| 49 |
44 47 48
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ) |
| 50 |
|
rspa |
⊢ ( ( ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 51 |
50
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 53 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝜑 ) |
| 54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 55 |
1 2 3 4 5
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℝ ) |
| 57 |
25
|
ffvelcdmi |
⊢ ( 𝑠 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 59 |
56 58
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
| 60 |
7
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 61 |
54 59 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 62 |
61 59
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℝ ) |
| 63 |
62
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℂ ) |
| 64 |
63
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ∈ ℝ ) |
| 65 |
53 64
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ∈ ℝ ) |
| 66 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑎 ∈ ℝ ) |
| 67 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑐 ∈ ( - π [,] π ) ) |
| 68 |
66 67 30
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ∈ ℝ ) |
| 69 |
|
peano2re |
⊢ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ∈ ℝ → ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ ) |
| 70 |
68 69
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ ) |
| 71 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) = ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) ) |
| 72 |
53 71
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) = ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) ) |
| 73 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℂ ) |
| 74 |
73
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ℝ ) |
| 75 |
53 74
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ℝ ) |
| 76 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
| 77 |
76
|
abscld |
⊢ ( 𝑎 ∈ ℝ → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 78 |
66 77
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 79 |
57
|
recnd |
⊢ ( 𝑠 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝑠 ) ∈ ℂ ) |
| 80 |
79
|
abscld |
⊢ ( 𝑠 ∈ ( - π [,] π ) → ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
| 81 |
80
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
| 82 |
26
|
recnd |
⊢ ( 𝑐 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝑐 ) ∈ ℂ ) |
| 83 |
82
|
abscld |
⊢ ( 𝑐 ∈ ( - π [,] π ) → ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ∈ ℝ ) |
| 84 |
67 83
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ∈ ℝ ) |
| 85 |
73
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 0 ≤ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 86 |
53 85
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 0 ≤ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ) |
| 87 |
82
|
absge0d |
⊢ ( 𝑐 ∈ ( - π [,] π ) → 0 ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 88 |
67 87
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 0 ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 89 |
74
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ∈ ℝ ) |
| 90 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑎 ∈ ℝ ) |
| 91 |
77
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
| 92 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) |
| 93 |
90
|
leabsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑎 ≤ ( abs ‘ 𝑎 ) ) |
| 94 |
89 90 91 92 93
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ ( abs ‘ 𝑎 ) ) |
| 95 |
94
|
ad4ant14 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ ( abs ‘ 𝑎 ) ) |
| 96 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) |
| 97 |
75 78 81 84 86 88 95 96
|
lemul12bd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) · ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ) ≤ ( ( abs ‘ 𝑎 ) · ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 98 |
58
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℂ ) |
| 99 |
73 98
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) = ( ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) · ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ) ) |
| 100 |
53 99
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) = ( ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) · ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ) ) |
| 101 |
76
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → 𝑎 ∈ ℂ ) |
| 102 |
27
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( 𝐾 ‘ 𝑐 ) ∈ ℂ ) |
| 103 |
101 102
|
absmuld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) = ( ( abs ‘ 𝑎 ) · ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 104 |
66 67 103
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) = ( ( abs ‘ 𝑎 ) · ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 105 |
97 100 104
|
3brtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) ≤ ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 106 |
72 105
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) ) |
| 107 |
68
|
ltp1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) < ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) |
| 108 |
65 68 70 106 107
|
lelttrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) < ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) |
| 109 |
65 70 108
|
ltled |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ) ∧ ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) |
| 110 |
49 51 52 109
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) |
| 111 |
110
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) → ( 𝑠 ∈ ( - π [,] π ) → ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) ) |
| 112 |
41 111
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) → ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) |
| 113 |
|
breq2 |
⊢ ( 𝑏 = ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) → ( ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) ) |
| 114 |
113
|
ralbidv |
⊢ ( 𝑏 = ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) → ( ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) ) |
| 115 |
114
|
rspcev |
⊢ ( ( ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ∈ ℝ+ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ ( ( abs ‘ ( 𝑎 · ( 𝐾 ‘ 𝑐 ) ) ) + 1 ) ) → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 116 |
34 112 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) ∧ 𝑐 ∈ ( - π [,] π ) ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) ) → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 117 |
116
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) → ( ∃ 𝑐 ∈ ( - π [,] π ) ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐾 ‘ 𝑠 ) ) ≤ ( abs ‘ ( 𝐾 ‘ 𝑐 ) ) → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 118 |
23 117
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 ) → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 119 |
118
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℝ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝐻 ‘ 𝑠 ) ) ≤ 𝑎 → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 120 |
8 119
|
mpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ+ ∀ 𝑠 ∈ ( - π [,] π ) ( abs ‘ ( 𝑈 ‘ 𝑠 ) ) ≤ 𝑏 ) |