| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
| 3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
| 4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
| 5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
| 6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
| 7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
| 8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
| 9 |
|
pntlem1.e |
|- E = ( U / D ) |
| 10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
| 11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
| 12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
| 13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
| 14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
| 15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
| 16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
| 17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
| 18 |
|
pntlem1.U |
|- ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) |
| 19 |
|
pntlem1.K |
|- ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
| 20 |
|
pntlem1.o |
|- O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) |
| 21 |
|
pntlem1.v |
|- ( ph -> V e. RR+ ) |
| 22 |
|
pntlem1.V |
|- ( ph -> ( ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( V [,] ( ( 1 + ( L x. E ) ) x. V ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
| 23 |
|
pntlem1.j |
|- ( ph -> J e. ( M ..^ N ) ) |
| 24 |
|
pntlem1.i |
|- I = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|- ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
| 26 |
25
|
simp1d |
|- ( ph -> Z e. RR+ ) |
| 27 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
| 28 |
27
|
simp2d |
|- ( ph -> K e. RR+ ) |
| 29 |
|
elfzoelz |
|- ( J e. ( M ..^ N ) -> J e. ZZ ) |
| 30 |
23 29
|
syl |
|- ( ph -> J e. ZZ ) |
| 31 |
30
|
peano2zd |
|- ( ph -> ( J + 1 ) e. ZZ ) |
| 32 |
28 31
|
rpexpcld |
|- ( ph -> ( K ^ ( J + 1 ) ) e. RR+ ) |
| 33 |
26 32
|
rpdivcld |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR+ ) |
| 34 |
33
|
rpred |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR ) |
| 35 |
34
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ ) |
| 36 |
|
1rp |
|- 1 e. RR+ |
| 37 |
1 2 3 4 5 6
|
pntlemd |
|- ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) |
| 38 |
37
|
simp1d |
|- ( ph -> L e. RR+ ) |
| 39 |
27
|
simp1d |
|- ( ph -> E e. RR+ ) |
| 40 |
38 39
|
rpmulcld |
|- ( ph -> ( L x. E ) e. RR+ ) |
| 41 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 1 + ( L x. E ) ) e. RR+ ) |
| 42 |
36 40 41
|
sylancr |
|- ( ph -> ( 1 + ( L x. E ) ) e. RR+ ) |
| 43 |
42 21
|
rpmulcld |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR+ ) |
| 44 |
26 43
|
rpdivcld |
|- ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR+ ) |
| 45 |
44
|
rpred |
|- ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR ) |
| 46 |
45
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ ) |
| 47 |
43
|
rpred |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR ) |
| 48 |
32
|
rpred |
|- ( ph -> ( K ^ ( J + 1 ) ) e. RR ) |
| 49 |
22
|
simpld |
|- ( ph -> ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) ) |
| 50 |
49
|
simprd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) |
| 51 |
28
|
rpcnd |
|- ( ph -> K e. CC ) |
| 52 |
28 30
|
rpexpcld |
|- ( ph -> ( K ^ J ) e. RR+ ) |
| 53 |
52
|
rpcnd |
|- ( ph -> ( K ^ J ) e. CC ) |
| 54 |
51 53
|
mulcomd |
|- ( ph -> ( K x. ( K ^ J ) ) = ( ( K ^ J ) x. K ) ) |
| 55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|- ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |
| 56 |
55
|
simp1d |
|- ( ph -> M e. NN ) |
| 57 |
|
elfzouz |
|- ( J e. ( M ..^ N ) -> J e. ( ZZ>= ` M ) ) |
| 58 |
23 57
|
syl |
|- ( ph -> J e. ( ZZ>= ` M ) ) |
| 59 |
|
eluznn |
|- ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) |
| 60 |
56 58 59
|
syl2anc |
|- ( ph -> J e. NN ) |
| 61 |
60
|
nnnn0d |
|- ( ph -> J e. NN0 ) |
| 62 |
51 61
|
expp1d |
|- ( ph -> ( K ^ ( J + 1 ) ) = ( ( K ^ J ) x. K ) ) |
| 63 |
54 62
|
eqtr4d |
|- ( ph -> ( K x. ( K ^ J ) ) = ( K ^ ( J + 1 ) ) ) |
| 64 |
50 63
|
breqtrd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K ^ ( J + 1 ) ) ) |
| 65 |
47 48 64
|
ltled |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) ) |
| 66 |
43 32 26
|
lediv2d |
|- ( ph -> ( ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) <-> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
| 67 |
65 66
|
mpbid |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) |
| 68 |
|
flwordi |
|- ( ( ( Z / ( K ^ ( J + 1 ) ) ) e. RR /\ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR /\ ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
| 69 |
34 45 67 68
|
syl3anc |
|- ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
| 70 |
|
eluz2 |
|- ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) <-> ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ /\ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) |
| 71 |
35 46 69 70
|
syl3anbrc |
|- ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) ) |
| 72 |
|
eluzp1p1 |
|- ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) -> ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) ) |
| 73 |
|
fzss1 |
|- ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) |
| 74 |
71 72 73
|
3syl |
|- ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) |
| 75 |
26 21
|
rpdivcld |
|- ( ph -> ( Z / V ) e. RR+ ) |
| 76 |
75
|
rpred |
|- ( ph -> ( Z / V ) e. RR ) |
| 77 |
76
|
flcld |
|- ( ph -> ( |_ ` ( Z / V ) ) e. ZZ ) |
| 78 |
26 52
|
rpdivcld |
|- ( ph -> ( Z / ( K ^ J ) ) e. RR+ ) |
| 79 |
78
|
rpred |
|- ( ph -> ( Z / ( K ^ J ) ) e. RR ) |
| 80 |
79
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ ) |
| 81 |
52
|
rpred |
|- ( ph -> ( K ^ J ) e. RR ) |
| 82 |
21
|
rpred |
|- ( ph -> V e. RR ) |
| 83 |
49
|
simpld |
|- ( ph -> ( K ^ J ) < V ) |
| 84 |
81 82 83
|
ltled |
|- ( ph -> ( K ^ J ) <_ V ) |
| 85 |
52 21 26
|
lediv2d |
|- ( ph -> ( ( K ^ J ) <_ V <-> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) ) |
| 86 |
84 85
|
mpbid |
|- ( ph -> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) |
| 87 |
|
flwordi |
|- ( ( ( Z / V ) e. RR /\ ( Z / ( K ^ J ) ) e. RR /\ ( Z / V ) <_ ( Z / ( K ^ J ) ) ) -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) |
| 88 |
76 79 86 87
|
syl3anc |
|- ( ph -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) |
| 89 |
|
eluz2 |
|- ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) <-> ( ( |_ ` ( Z / V ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ /\ ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
| 90 |
77 80 88 89
|
syl3anbrc |
|- ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) ) |
| 91 |
|
fzss2 |
|- ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
| 92 |
90 91
|
syl |
|- ( ph -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
| 93 |
74 92
|
sstrd |
|- ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
| 94 |
93 24 20
|
3sstr4g |
|- ( ph -> I C_ O ) |