| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 |  | pntlem1.U |  |-  ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 19 |  | pntlem1.K |  |-  ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 20 |  | pntlem1.o |  |-  O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) | 
						
							| 21 |  | pntlem1.v |  |-  ( ph -> V e. RR+ ) | 
						
							| 22 |  | pntlem1.V |  |-  ( ph -> ( ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( V [,] ( ( 1 + ( L x. E ) ) x. V ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 23 |  | pntlem1.j |  |-  ( ph -> J e. ( M ..^ N ) ) | 
						
							| 24 |  | pntlem1.i |  |-  I = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 26 | 25 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 28 | 27 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 29 |  | elfzoelz |  |-  ( J e. ( M ..^ N ) -> J e. ZZ ) | 
						
							| 30 | 23 29 | syl |  |-  ( ph -> J e. ZZ ) | 
						
							| 31 | 30 | peano2zd |  |-  ( ph -> ( J + 1 ) e. ZZ ) | 
						
							| 32 | 28 31 | rpexpcld |  |-  ( ph -> ( K ^ ( J + 1 ) ) e. RR+ ) | 
						
							| 33 | 26 32 | rpdivcld |  |-  ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR+ ) | 
						
							| 34 | 33 | rpred |  |-  ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR ) | 
						
							| 35 | 34 | flcld |  |-  ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ ) | 
						
							| 36 |  | 1rp |  |-  1 e. RR+ | 
						
							| 37 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 38 | 37 | simp1d |  |-  ( ph -> L e. RR+ ) | 
						
							| 39 | 27 | simp1d |  |-  ( ph -> E e. RR+ ) | 
						
							| 40 | 38 39 | rpmulcld |  |-  ( ph -> ( L x. E ) e. RR+ ) | 
						
							| 41 |  | rpaddcl |  |-  ( ( 1 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 1 + ( L x. E ) ) e. RR+ ) | 
						
							| 42 | 36 40 41 | sylancr |  |-  ( ph -> ( 1 + ( L x. E ) ) e. RR+ ) | 
						
							| 43 | 42 21 | rpmulcld |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR+ ) | 
						
							| 44 | 26 43 | rpdivcld |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR+ ) | 
						
							| 45 | 44 | rpred |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR ) | 
						
							| 46 | 45 | flcld |  |-  ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ ) | 
						
							| 47 | 43 | rpred |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR ) | 
						
							| 48 | 32 | rpred |  |-  ( ph -> ( K ^ ( J + 1 ) ) e. RR ) | 
						
							| 49 | 22 | simpld |  |-  ( ph -> ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) ) | 
						
							| 50 | 49 | simprd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) | 
						
							| 51 | 28 | rpcnd |  |-  ( ph -> K e. CC ) | 
						
							| 52 | 28 30 | rpexpcld |  |-  ( ph -> ( K ^ J ) e. RR+ ) | 
						
							| 53 | 52 | rpcnd |  |-  ( ph -> ( K ^ J ) e. CC ) | 
						
							| 54 | 51 53 | mulcomd |  |-  ( ph -> ( K x. ( K ^ J ) ) = ( ( K ^ J ) x. K ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemg |  |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) | 
						
							| 56 | 55 | simp1d |  |-  ( ph -> M e. NN ) | 
						
							| 57 |  | elfzouz |  |-  ( J e. ( M ..^ N ) -> J e. ( ZZ>= ` M ) ) | 
						
							| 58 | 23 57 | syl |  |-  ( ph -> J e. ( ZZ>= ` M ) ) | 
						
							| 59 |  | eluznn |  |-  ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) | 
						
							| 60 | 56 58 59 | syl2anc |  |-  ( ph -> J e. NN ) | 
						
							| 61 | 60 | nnnn0d |  |-  ( ph -> J e. NN0 ) | 
						
							| 62 | 51 61 | expp1d |  |-  ( ph -> ( K ^ ( J + 1 ) ) = ( ( K ^ J ) x. K ) ) | 
						
							| 63 | 54 62 | eqtr4d |  |-  ( ph -> ( K x. ( K ^ J ) ) = ( K ^ ( J + 1 ) ) ) | 
						
							| 64 | 50 63 | breqtrd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K ^ ( J + 1 ) ) ) | 
						
							| 65 | 47 48 64 | ltled |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) ) | 
						
							| 66 | 43 32 26 | lediv2d |  |-  ( ph -> ( ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) <-> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 67 | 65 66 | mpbid |  |-  ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) | 
						
							| 68 |  | flwordi |  |-  ( ( ( Z / ( K ^ ( J + 1 ) ) ) e. RR /\ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR /\ ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 69 | 34 45 67 68 | syl3anc |  |-  ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 70 |  | eluz2 |  |-  ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) <-> ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ /\ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 71 | 35 46 69 70 | syl3anbrc |  |-  ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) ) | 
						
							| 72 |  | eluzp1p1 |  |-  ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) -> ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) ) | 
						
							| 73 |  | fzss1 |  |-  ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) | 
						
							| 74 | 71 72 73 | 3syl |  |-  ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) | 
						
							| 75 | 26 21 | rpdivcld |  |-  ( ph -> ( Z / V ) e. RR+ ) | 
						
							| 76 | 75 | rpred |  |-  ( ph -> ( Z / V ) e. RR ) | 
						
							| 77 | 76 | flcld |  |-  ( ph -> ( |_ ` ( Z / V ) ) e. ZZ ) | 
						
							| 78 | 26 52 | rpdivcld |  |-  ( ph -> ( Z / ( K ^ J ) ) e. RR+ ) | 
						
							| 79 | 78 | rpred |  |-  ( ph -> ( Z / ( K ^ J ) ) e. RR ) | 
						
							| 80 | 79 | flcld |  |-  ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ ) | 
						
							| 81 | 52 | rpred |  |-  ( ph -> ( K ^ J ) e. RR ) | 
						
							| 82 | 21 | rpred |  |-  ( ph -> V e. RR ) | 
						
							| 83 | 49 | simpld |  |-  ( ph -> ( K ^ J ) < V ) | 
						
							| 84 | 81 82 83 | ltled |  |-  ( ph -> ( K ^ J ) <_ V ) | 
						
							| 85 | 52 21 26 | lediv2d |  |-  ( ph -> ( ( K ^ J ) <_ V <-> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) ) | 
						
							| 86 | 84 85 | mpbid |  |-  ( ph -> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) | 
						
							| 87 |  | flwordi |  |-  ( ( ( Z / V ) e. RR /\ ( Z / ( K ^ J ) ) e. RR /\ ( Z / V ) <_ ( Z / ( K ^ J ) ) ) -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) | 
						
							| 88 | 76 79 86 87 | syl3anc |  |-  ( ph -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) | 
						
							| 89 |  | eluz2 |  |-  ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) <-> ( ( |_ ` ( Z / V ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ /\ ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) ) | 
						
							| 90 | 77 80 88 89 | syl3anbrc |  |-  ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) ) | 
						
							| 91 |  | fzss2 |  |-  ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) | 
						
							| 92 | 90 91 | syl |  |-  ( ph -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) | 
						
							| 93 | 74 92 | sstrd |  |-  ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) | 
						
							| 94 | 93 24 20 | 3sstr4g |  |-  ( ph -> I C_ O ) |