Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
18 |
|
pntlem1.U |
|- ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) |
19 |
|
pntlem1.K |
|- ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
20 |
|
pntlem1.o |
|- O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) |
21 |
|
pntlem1.v |
|- ( ph -> V e. RR+ ) |
22 |
|
pntlem1.V |
|- ( ph -> ( ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( V [,] ( ( 1 + ( L x. E ) ) x. V ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
23 |
|
pntlem1.j |
|- ( ph -> J e. ( M ..^ N ) ) |
24 |
|
pntlem1.i |
|- I = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|- ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
26 |
25
|
simp1d |
|- ( ph -> Z e. RR+ ) |
27 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
28 |
27
|
simp2d |
|- ( ph -> K e. RR+ ) |
29 |
|
elfzoelz |
|- ( J e. ( M ..^ N ) -> J e. ZZ ) |
30 |
23 29
|
syl |
|- ( ph -> J e. ZZ ) |
31 |
30
|
peano2zd |
|- ( ph -> ( J + 1 ) e. ZZ ) |
32 |
28 31
|
rpexpcld |
|- ( ph -> ( K ^ ( J + 1 ) ) e. RR+ ) |
33 |
26 32
|
rpdivcld |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR+ ) |
34 |
33
|
rpred |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) e. RR ) |
35 |
34
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ ) |
36 |
|
1rp |
|- 1 e. RR+ |
37 |
1 2 3 4 5 6
|
pntlemd |
|- ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) |
38 |
37
|
simp1d |
|- ( ph -> L e. RR+ ) |
39 |
27
|
simp1d |
|- ( ph -> E e. RR+ ) |
40 |
38 39
|
rpmulcld |
|- ( ph -> ( L x. E ) e. RR+ ) |
41 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 1 + ( L x. E ) ) e. RR+ ) |
42 |
36 40 41
|
sylancr |
|- ( ph -> ( 1 + ( L x. E ) ) e. RR+ ) |
43 |
42 21
|
rpmulcld |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR+ ) |
44 |
26 43
|
rpdivcld |
|- ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR+ ) |
45 |
44
|
rpred |
|- ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR ) |
46 |
45
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ ) |
47 |
43
|
rpred |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR ) |
48 |
32
|
rpred |
|- ( ph -> ( K ^ ( J + 1 ) ) e. RR ) |
49 |
22
|
simpld |
|- ( ph -> ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) ) |
50 |
49
|
simprd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) |
51 |
28
|
rpcnd |
|- ( ph -> K e. CC ) |
52 |
28 30
|
rpexpcld |
|- ( ph -> ( K ^ J ) e. RR+ ) |
53 |
52
|
rpcnd |
|- ( ph -> ( K ^ J ) e. CC ) |
54 |
51 53
|
mulcomd |
|- ( ph -> ( K x. ( K ^ J ) ) = ( ( K ^ J ) x. K ) ) |
55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|- ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |
56 |
55
|
simp1d |
|- ( ph -> M e. NN ) |
57 |
|
elfzouz |
|- ( J e. ( M ..^ N ) -> J e. ( ZZ>= ` M ) ) |
58 |
23 57
|
syl |
|- ( ph -> J e. ( ZZ>= ` M ) ) |
59 |
|
eluznn |
|- ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) |
60 |
56 58 59
|
syl2anc |
|- ( ph -> J e. NN ) |
61 |
60
|
nnnn0d |
|- ( ph -> J e. NN0 ) |
62 |
51 61
|
expp1d |
|- ( ph -> ( K ^ ( J + 1 ) ) = ( ( K ^ J ) x. K ) ) |
63 |
54 62
|
eqtr4d |
|- ( ph -> ( K x. ( K ^ J ) ) = ( K ^ ( J + 1 ) ) ) |
64 |
50 63
|
breqtrd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K ^ ( J + 1 ) ) ) |
65 |
47 48 64
|
ltled |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) ) |
66 |
43 32 26
|
lediv2d |
|- ( ph -> ( ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) <-> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
67 |
65 66
|
mpbid |
|- ( ph -> ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) |
68 |
|
flwordi |
|- ( ( ( Z / ( K ^ ( J + 1 ) ) ) e. RR /\ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR /\ ( Z / ( K ^ ( J + 1 ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
69 |
34 45 67 68
|
syl3anc |
|- ( ph -> ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) |
70 |
|
eluz2 |
|- ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) <-> ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) e. ZZ /\ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) <_ ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) |
71 |
35 46 69 70
|
syl3anbrc |
|- ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) ) |
72 |
|
eluzp1p1 |
|- ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) ) -> ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) ) |
73 |
|
fzss1 |
|- ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ) -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) |
74 |
71 72 73
|
3syl |
|- ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) ) |
75 |
26 21
|
rpdivcld |
|- ( ph -> ( Z / V ) e. RR+ ) |
76 |
75
|
rpred |
|- ( ph -> ( Z / V ) e. RR ) |
77 |
76
|
flcld |
|- ( ph -> ( |_ ` ( Z / V ) ) e. ZZ ) |
78 |
26 52
|
rpdivcld |
|- ( ph -> ( Z / ( K ^ J ) ) e. RR+ ) |
79 |
78
|
rpred |
|- ( ph -> ( Z / ( K ^ J ) ) e. RR ) |
80 |
79
|
flcld |
|- ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ ) |
81 |
52
|
rpred |
|- ( ph -> ( K ^ J ) e. RR ) |
82 |
21
|
rpred |
|- ( ph -> V e. RR ) |
83 |
49
|
simpld |
|- ( ph -> ( K ^ J ) < V ) |
84 |
81 82 83
|
ltled |
|- ( ph -> ( K ^ J ) <_ V ) |
85 |
52 21 26
|
lediv2d |
|- ( ph -> ( ( K ^ J ) <_ V <-> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) ) |
86 |
84 85
|
mpbid |
|- ( ph -> ( Z / V ) <_ ( Z / ( K ^ J ) ) ) |
87 |
|
flwordi |
|- ( ( ( Z / V ) e. RR /\ ( Z / ( K ^ J ) ) e. RR /\ ( Z / V ) <_ ( Z / ( K ^ J ) ) ) -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) |
88 |
76 79 86 87
|
syl3anc |
|- ( ph -> ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) |
89 |
|
eluz2 |
|- ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) <-> ( ( |_ ` ( Z / V ) ) e. ZZ /\ ( |_ ` ( Z / ( K ^ J ) ) ) e. ZZ /\ ( |_ ` ( Z / V ) ) <_ ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
90 |
77 80 88 89
|
syl3anbrc |
|- ( ph -> ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) ) |
91 |
|
fzss2 |
|- ( ( |_ ` ( Z / ( K ^ J ) ) ) e. ( ZZ>= ` ( |_ ` ( Z / V ) ) ) -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
92 |
90 91
|
syl |
|- ( ph -> ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
93 |
74 92
|
sstrd |
|- ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) C_ ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) ) |
94 |
93 24 20
|
3sstr4g |
|- ( ph -> I C_ O ) |