| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 |  | pntlem1.U |  |-  ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 19 |  | pntlem1.K |  |-  ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 20 |  | pntlem1.o |  |-  O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) | 
						
							| 21 |  | pntlem1.v |  |-  ( ph -> V e. RR+ ) | 
						
							| 22 |  | pntlem1.V |  |-  ( ph -> ( ( ( K ^ J ) < V /\ ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( V [,] ( ( 1 + ( L x. E ) ) x. V ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 23 |  | pntlem1.j |  |-  ( ph -> J e. ( M ..^ N ) ) | 
						
							| 24 |  | pntlem1.i |  |-  I = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 26 | 25 | simp1d |  |-  ( ph -> L e. RR+ ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 28 | 27 | simp1d |  |-  ( ph -> E e. RR+ ) | 
						
							| 29 | 26 28 | rpmulcld |  |-  ( ph -> ( L x. E ) e. RR+ ) | 
						
							| 30 |  | 4re |  |-  4 e. RR | 
						
							| 31 |  | 4pos |  |-  0 < 4 | 
						
							| 32 | 30 31 | elrpii |  |-  4 e. RR+ | 
						
							| 33 |  | rpdivcl |  |-  ( ( ( L x. E ) e. RR+ /\ 4 e. RR+ ) -> ( ( L x. E ) / 4 ) e. RR+ ) | 
						
							| 34 | 29 32 33 | sylancl |  |-  ( ph -> ( ( L x. E ) / 4 ) e. RR+ ) | 
						
							| 35 | 34 | rpred |  |-  ( ph -> ( ( L x. E ) / 4 ) e. RR ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 37 | 36 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 38 | 37 21 | rpdivcld |  |-  ( ph -> ( Z / V ) e. RR+ ) | 
						
							| 39 | 38 | rpred |  |-  ( ph -> ( Z / V ) e. RR ) | 
						
							| 40 | 35 39 | remulcld |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) e. RR ) | 
						
							| 41 |  | fzfid |  |-  ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) e. Fin ) | 
						
							| 42 | 24 41 | eqeltrid |  |-  ( ph -> I e. Fin ) | 
						
							| 43 |  | hashcl |  |-  ( I e. Fin -> ( # ` I ) e. NN0 ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> ( # ` I ) e. NN0 ) | 
						
							| 45 | 44 | nn0red |  |-  ( ph -> ( # ` I ) e. RR ) | 
						
							| 46 | 40 | recnd |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) e. CC ) | 
						
							| 47 |  | 1rp |  |-  1 e. RR+ | 
						
							| 48 |  | rpaddcl |  |-  ( ( 1 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 1 + ( L x. E ) ) e. RR+ ) | 
						
							| 49 | 47 29 48 | sylancr |  |-  ( ph -> ( 1 + ( L x. E ) ) e. RR+ ) | 
						
							| 50 | 49 21 | rpmulcld |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR+ ) | 
						
							| 51 | 37 50 | rpdivcld |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR+ ) | 
						
							| 52 | 51 | rpred |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR ) | 
						
							| 53 |  | reflcl |  |-  ( ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. RR ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. RR ) | 
						
							| 55 | 54 | recnd |  |-  ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. CC ) | 
						
							| 56 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 57 | 46 55 56 | add32d |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) + 1 ) = ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 58 |  | peano2re |  |-  ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) e. RR -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) e. RR ) | 
						
							| 59 | 40 58 | syl |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) e. RR ) | 
						
							| 60 | 59 54 | readdcld |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) e. RR ) | 
						
							| 61 |  | reflcl |  |-  ( ( Z / V ) e. RR -> ( |_ ` ( Z / V ) ) e. RR ) | 
						
							| 62 | 39 61 | syl |  |-  ( ph -> ( |_ ` ( Z / V ) ) e. RR ) | 
						
							| 63 |  | peano2re |  |-  ( ( |_ ` ( Z / V ) ) e. RR -> ( ( |_ ` ( Z / V ) ) + 1 ) e. RR ) | 
						
							| 64 | 62 63 | syl |  |-  ( ph -> ( ( |_ ` ( Z / V ) ) + 1 ) e. RR ) | 
						
							| 65 | 29 | rphalfcld |  |-  ( ph -> ( ( L x. E ) / 2 ) e. RR+ ) | 
						
							| 66 | 65 38 | rpmulcld |  |-  ( ph -> ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) e. RR+ ) | 
						
							| 67 | 66 | rpred |  |-  ( ph -> ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) e. RR ) | 
						
							| 68 | 67 52 | readdcld |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) e. RR ) | 
						
							| 69 |  | rpdivcl |  |-  ( ( 4 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 70 | 32 29 69 | sylancr |  |-  ( ph -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 71 | 70 | rpred |  |-  ( ph -> ( 4 / ( L x. E ) ) e. RR ) | 
						
							| 72 | 37 | rpsqrtcld |  |-  ( ph -> ( sqrt ` Z ) e. RR+ ) | 
						
							| 73 | 72 | rpred |  |-  ( ph -> ( sqrt ` Z ) e. RR ) | 
						
							| 74 | 36 | simp3d |  |-  ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 75 | 74 | simp1d |  |-  ( ph -> ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) ) | 
						
							| 76 | 50 | rpred |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) e. RR ) | 
						
							| 77 | 27 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 78 |  | elfzoelz |  |-  ( J e. ( M ..^ N ) -> J e. ZZ ) | 
						
							| 79 | 23 78 | syl |  |-  ( ph -> J e. ZZ ) | 
						
							| 80 | 79 | peano2zd |  |-  ( ph -> ( J + 1 ) e. ZZ ) | 
						
							| 81 | 77 80 | rpexpcld |  |-  ( ph -> ( K ^ ( J + 1 ) ) e. RR+ ) | 
						
							| 82 | 81 | rpred |  |-  ( ph -> ( K ^ ( J + 1 ) ) e. RR ) | 
						
							| 83 | 22 | simplrd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K x. ( K ^ J ) ) ) | 
						
							| 84 | 77 | rpcnd |  |-  ( ph -> K e. CC ) | 
						
							| 85 | 77 79 | rpexpcld |  |-  ( ph -> ( K ^ J ) e. RR+ ) | 
						
							| 86 | 85 | rpcnd |  |-  ( ph -> ( K ^ J ) e. CC ) | 
						
							| 87 | 84 86 | mulcomd |  |-  ( ph -> ( K x. ( K ^ J ) ) = ( ( K ^ J ) x. K ) ) | 
						
							| 88 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemg |  |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) | 
						
							| 89 | 88 | simp1d |  |-  ( ph -> M e. NN ) | 
						
							| 90 |  | elfzouz |  |-  ( J e. ( M ..^ N ) -> J e. ( ZZ>= ` M ) ) | 
						
							| 91 | 23 90 | syl |  |-  ( ph -> J e. ( ZZ>= ` M ) ) | 
						
							| 92 |  | eluznn |  |-  ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) | 
						
							| 93 | 89 91 92 | syl2anc |  |-  ( ph -> J e. NN ) | 
						
							| 94 | 93 | nnnn0d |  |-  ( ph -> J e. NN0 ) | 
						
							| 95 | 84 94 | expp1d |  |-  ( ph -> ( K ^ ( J + 1 ) ) = ( ( K ^ J ) x. K ) ) | 
						
							| 96 | 87 95 | eqtr4d |  |-  ( ph -> ( K x. ( K ^ J ) ) = ( K ^ ( J + 1 ) ) ) | 
						
							| 97 | 83 96 | breqtrd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( K ^ ( J + 1 ) ) ) | 
						
							| 98 | 76 82 97 | ltled |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) <_ ( K ^ ( J + 1 ) ) ) | 
						
							| 99 |  | fzofzp1 |  |-  ( J e. ( M ..^ N ) -> ( J + 1 ) e. ( M ... N ) ) | 
						
							| 100 | 23 99 | syl |  |-  ( ph -> ( J + 1 ) e. ( M ... N ) ) | 
						
							| 101 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemh |  |-  ( ( ph /\ ( J + 1 ) e. ( M ... N ) ) -> ( X < ( K ^ ( J + 1 ) ) /\ ( K ^ ( J + 1 ) ) <_ ( sqrt ` Z ) ) ) | 
						
							| 102 | 100 101 | mpdan |  |-  ( ph -> ( X < ( K ^ ( J + 1 ) ) /\ ( K ^ ( J + 1 ) ) <_ ( sqrt ` Z ) ) ) | 
						
							| 103 | 102 | simprd |  |-  ( ph -> ( K ^ ( J + 1 ) ) <_ ( sqrt ` Z ) ) | 
						
							| 104 | 76 82 73 98 103 | letrd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) <_ ( sqrt ` Z ) ) | 
						
							| 105 | 76 73 72 | lemul2d |  |-  ( ph -> ( ( ( 1 + ( L x. E ) ) x. V ) <_ ( sqrt ` Z ) <-> ( ( sqrt ` Z ) x. ( ( 1 + ( L x. E ) ) x. V ) ) <_ ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) ) ) | 
						
							| 106 | 104 105 | mpbid |  |-  ( ph -> ( ( sqrt ` Z ) x. ( ( 1 + ( L x. E ) ) x. V ) ) <_ ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) ) | 
						
							| 107 | 37 | rprege0d |  |-  ( ph -> ( Z e. RR /\ 0 <_ Z ) ) | 
						
							| 108 |  | remsqsqrt |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 109 | 107 108 | syl |  |-  ( ph -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 110 | 106 109 | breqtrd |  |-  ( ph -> ( ( sqrt ` Z ) x. ( ( 1 + ( L x. E ) ) x. V ) ) <_ Z ) | 
						
							| 111 | 37 | rpred |  |-  ( ph -> Z e. RR ) | 
						
							| 112 | 73 111 50 | lemuldivd |  |-  ( ph -> ( ( ( sqrt ` Z ) x. ( ( 1 + ( L x. E ) ) x. V ) ) <_ Z <-> ( sqrt ` Z ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 113 | 110 112 | mpbid |  |-  ( ph -> ( sqrt ` Z ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) | 
						
							| 114 | 21 | rpcnd |  |-  ( ph -> V e. CC ) | 
						
							| 115 | 114 | mullidd |  |-  ( ph -> ( 1 x. V ) = V ) | 
						
							| 116 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 117 | 49 | rpred |  |-  ( ph -> ( 1 + ( L x. E ) ) e. RR ) | 
						
							| 118 |  | 1re |  |-  1 e. RR | 
						
							| 119 |  | ltaddrp |  |-  ( ( 1 e. RR /\ ( L x. E ) e. RR+ ) -> 1 < ( 1 + ( L x. E ) ) ) | 
						
							| 120 | 118 29 119 | sylancr |  |-  ( ph -> 1 < ( 1 + ( L x. E ) ) ) | 
						
							| 121 | 116 117 21 120 | ltmul1dd |  |-  ( ph -> ( 1 x. V ) < ( ( 1 + ( L x. E ) ) x. V ) ) | 
						
							| 122 | 115 121 | eqbrtrrd |  |-  ( ph -> V < ( ( 1 + ( L x. E ) ) x. V ) ) | 
						
							| 123 | 21 50 37 | ltdiv2d |  |-  ( ph -> ( V < ( ( 1 + ( L x. E ) ) x. V ) <-> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) < ( Z / V ) ) ) | 
						
							| 124 | 122 123 | mpbid |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) < ( Z / V ) ) | 
						
							| 125 | 52 39 124 | ltled |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) <_ ( Z / V ) ) | 
						
							| 126 | 73 52 39 113 125 | letrd |  |-  ( ph -> ( sqrt ` Z ) <_ ( Z / V ) ) | 
						
							| 127 | 71 73 39 75 126 | letrd |  |-  ( ph -> ( 4 / ( L x. E ) ) <_ ( Z / V ) ) | 
						
							| 128 | 71 39 39 127 | leadd2dd |  |-  ( ph -> ( ( Z / V ) + ( 4 / ( L x. E ) ) ) <_ ( ( Z / V ) + ( Z / V ) ) ) | 
						
							| 129 | 38 | rpcnd |  |-  ( ph -> ( Z / V ) e. CC ) | 
						
							| 130 | 129 | 2timesd |  |-  ( ph -> ( 2 x. ( Z / V ) ) = ( ( Z / V ) + ( Z / V ) ) ) | 
						
							| 131 | 128 130 | breqtrrd |  |-  ( ph -> ( ( Z / V ) + ( 4 / ( L x. E ) ) ) <_ ( 2 x. ( Z / V ) ) ) | 
						
							| 132 | 39 71 | readdcld |  |-  ( ph -> ( ( Z / V ) + ( 4 / ( L x. E ) ) ) e. RR ) | 
						
							| 133 |  | 2re |  |-  2 e. RR | 
						
							| 134 |  | remulcl |  |-  ( ( 2 e. RR /\ ( Z / V ) e. RR ) -> ( 2 x. ( Z / V ) ) e. RR ) | 
						
							| 135 | 133 39 134 | sylancr |  |-  ( ph -> ( 2 x. ( Z / V ) ) e. RR ) | 
						
							| 136 | 132 135 34 | lemul2d |  |-  ( ph -> ( ( ( Z / V ) + ( 4 / ( L x. E ) ) ) <_ ( 2 x. ( Z / V ) ) <-> ( ( ( L x. E ) / 4 ) x. ( ( Z / V ) + ( 4 / ( L x. E ) ) ) ) <_ ( ( ( L x. E ) / 4 ) x. ( 2 x. ( Z / V ) ) ) ) ) | 
						
							| 137 | 131 136 | mpbid |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( ( Z / V ) + ( 4 / ( L x. E ) ) ) ) <_ ( ( ( L x. E ) / 4 ) x. ( 2 x. ( Z / V ) ) ) ) | 
						
							| 138 | 34 | rpcnd |  |-  ( ph -> ( ( L x. E ) / 4 ) e. CC ) | 
						
							| 139 | 70 | rpcnd |  |-  ( ph -> ( 4 / ( L x. E ) ) e. CC ) | 
						
							| 140 | 138 129 139 | adddid |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( ( Z / V ) + ( 4 / ( L x. E ) ) ) ) = ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( ( ( L x. E ) / 4 ) x. ( 4 / ( L x. E ) ) ) ) ) | 
						
							| 141 | 29 | rpcnne0d |  |-  ( ph -> ( ( L x. E ) e. CC /\ ( L x. E ) =/= 0 ) ) | 
						
							| 142 |  | rpcnne0 |  |-  ( 4 e. RR+ -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 143 | 32 142 | mp1i |  |-  ( ph -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 144 |  | divcan6 |  |-  ( ( ( ( L x. E ) e. CC /\ ( L x. E ) =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( ( L x. E ) / 4 ) x. ( 4 / ( L x. E ) ) ) = 1 ) | 
						
							| 145 | 141 143 144 | syl2anc |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( 4 / ( L x. E ) ) ) = 1 ) | 
						
							| 146 | 145 | oveq2d |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( ( ( L x. E ) / 4 ) x. ( 4 / ( L x. E ) ) ) ) = ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) ) | 
						
							| 147 | 140 146 | eqtrd |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( ( Z / V ) + ( 4 / ( L x. E ) ) ) ) = ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) ) | 
						
							| 148 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 149 | 138 148 129 | mulassd |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. 2 ) x. ( Z / V ) ) = ( ( ( L x. E ) / 4 ) x. ( 2 x. ( Z / V ) ) ) ) | 
						
							| 150 | 29 | rpcnd |  |-  ( ph -> ( L x. E ) e. CC ) | 
						
							| 151 |  | 2rp |  |-  2 e. RR+ | 
						
							| 152 |  | rpcnne0 |  |-  ( 2 e. RR+ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 153 | 151 152 | mp1i |  |-  ( ph -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 154 |  | divdiv1 |  |-  ( ( ( L x. E ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( L x. E ) / 2 ) / 2 ) = ( ( L x. E ) / ( 2 x. 2 ) ) ) | 
						
							| 155 | 150 153 153 154 | syl3anc |  |-  ( ph -> ( ( ( L x. E ) / 2 ) / 2 ) = ( ( L x. E ) / ( 2 x. 2 ) ) ) | 
						
							| 156 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 157 | 156 | oveq2i |  |-  ( ( L x. E ) / ( 2 x. 2 ) ) = ( ( L x. E ) / 4 ) | 
						
							| 158 | 155 157 | eqtr2di |  |-  ( ph -> ( ( L x. E ) / 4 ) = ( ( ( L x. E ) / 2 ) / 2 ) ) | 
						
							| 159 | 158 | oveq1d |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. 2 ) = ( ( ( ( L x. E ) / 2 ) / 2 ) x. 2 ) ) | 
						
							| 160 | 150 | halfcld |  |-  ( ph -> ( ( L x. E ) / 2 ) e. CC ) | 
						
							| 161 | 153 | simprd |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 162 | 160 148 161 | divcan1d |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) / 2 ) x. 2 ) = ( ( L x. E ) / 2 ) ) | 
						
							| 163 | 159 162 | eqtrd |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. 2 ) = ( ( L x. E ) / 2 ) ) | 
						
							| 164 | 163 | oveq1d |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. 2 ) x. ( Z / V ) ) = ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) ) | 
						
							| 165 | 149 164 | eqtr3d |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( 2 x. ( Z / V ) ) ) = ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) ) | 
						
							| 166 | 137 147 165 | 3brtr3d |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) <_ ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) ) | 
						
							| 167 |  | flle |  |-  ( ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) | 
						
							| 168 | 52 167 | syl |  |-  ( ph -> ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) <_ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) | 
						
							| 169 | 59 54 67 52 166 168 | le2addd |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) <_ ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 170 | 65 | rpred |  |-  ( ph -> ( ( L x. E ) / 2 ) e. RR ) | 
						
							| 171 | 49 | rprecred |  |-  ( ph -> ( 1 / ( 1 + ( L x. E ) ) ) e. RR ) | 
						
							| 172 | 170 171 | readdcld |  |-  ( ph -> ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) e. RR ) | 
						
							| 173 | 29 | rpred |  |-  ( ph -> ( L x. E ) e. RR ) | 
						
							| 174 | 28 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 175 | 26 | rpred |  |-  ( ph -> L e. RR ) | 
						
							| 176 |  | eliooord |  |-  ( L e. ( 0 (,) 1 ) -> ( 0 < L /\ L < 1 ) ) | 
						
							| 177 | 4 176 | syl |  |-  ( ph -> ( 0 < L /\ L < 1 ) ) | 
						
							| 178 | 177 | simprd |  |-  ( ph -> L < 1 ) | 
						
							| 179 | 175 116 28 178 | ltmul1dd |  |-  ( ph -> ( L x. E ) < ( 1 x. E ) ) | 
						
							| 180 | 28 | rpcnd |  |-  ( ph -> E e. CC ) | 
						
							| 181 | 180 | mullidd |  |-  ( ph -> ( 1 x. E ) = E ) | 
						
							| 182 | 179 181 | breqtrd |  |-  ( ph -> ( L x. E ) < E ) | 
						
							| 183 | 27 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 184 | 183 | simp1d |  |-  ( ph -> E e. ( 0 (,) 1 ) ) | 
						
							| 185 |  | eliooord |  |-  ( E e. ( 0 (,) 1 ) -> ( 0 < E /\ E < 1 ) ) | 
						
							| 186 | 184 185 | syl |  |-  ( ph -> ( 0 < E /\ E < 1 ) ) | 
						
							| 187 | 186 | simprd |  |-  ( ph -> E < 1 ) | 
						
							| 188 | 173 174 116 182 187 | lttrd |  |-  ( ph -> ( L x. E ) < 1 ) | 
						
							| 189 | 173 116 116 188 | ltadd2dd |  |-  ( ph -> ( 1 + ( L x. E ) ) < ( 1 + 1 ) ) | 
						
							| 190 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 191 | 189 190 | breqtrrdi |  |-  ( ph -> ( 1 + ( L x. E ) ) < 2 ) | 
						
							| 192 | 49 | rpregt0d |  |-  ( ph -> ( ( 1 + ( L x. E ) ) e. RR /\ 0 < ( 1 + ( L x. E ) ) ) ) | 
						
							| 193 | 133 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 194 |  | 2pos |  |-  0 < 2 | 
						
							| 195 | 194 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 196 | 29 | rpregt0d |  |-  ( ph -> ( ( L x. E ) e. RR /\ 0 < ( L x. E ) ) ) | 
						
							| 197 |  | ltdiv2 |  |-  ( ( ( ( 1 + ( L x. E ) ) e. RR /\ 0 < ( 1 + ( L x. E ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) /\ ( ( L x. E ) e. RR /\ 0 < ( L x. E ) ) ) -> ( ( 1 + ( L x. E ) ) < 2 <-> ( ( L x. E ) / 2 ) < ( ( L x. E ) / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 198 | 192 193 195 196 197 | syl121anc |  |-  ( ph -> ( ( 1 + ( L x. E ) ) < 2 <-> ( ( L x. E ) / 2 ) < ( ( L x. E ) / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 199 | 191 198 | mpbid |  |-  ( ph -> ( ( L x. E ) / 2 ) < ( ( L x. E ) / ( 1 + ( L x. E ) ) ) ) | 
						
							| 200 | 49 | rpcnd |  |-  ( ph -> ( 1 + ( L x. E ) ) e. CC ) | 
						
							| 201 | 49 | rpcnne0d |  |-  ( ph -> ( ( 1 + ( L x. E ) ) e. CC /\ ( 1 + ( L x. E ) ) =/= 0 ) ) | 
						
							| 202 |  | divsubdir |  |-  ( ( ( 1 + ( L x. E ) ) e. CC /\ 1 e. CC /\ ( ( 1 + ( L x. E ) ) e. CC /\ ( 1 + ( L x. E ) ) =/= 0 ) ) -> ( ( ( 1 + ( L x. E ) ) - 1 ) / ( 1 + ( L x. E ) ) ) = ( ( ( 1 + ( L x. E ) ) / ( 1 + ( L x. E ) ) ) - ( 1 / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 203 | 200 56 201 202 | syl3anc |  |-  ( ph -> ( ( ( 1 + ( L x. E ) ) - 1 ) / ( 1 + ( L x. E ) ) ) = ( ( ( 1 + ( L x. E ) ) / ( 1 + ( L x. E ) ) ) - ( 1 / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 204 |  | ax-1cn |  |-  1 e. CC | 
						
							| 205 |  | pncan2 |  |-  ( ( 1 e. CC /\ ( L x. E ) e. CC ) -> ( ( 1 + ( L x. E ) ) - 1 ) = ( L x. E ) ) | 
						
							| 206 | 204 150 205 | sylancr |  |-  ( ph -> ( ( 1 + ( L x. E ) ) - 1 ) = ( L x. E ) ) | 
						
							| 207 | 206 | oveq1d |  |-  ( ph -> ( ( ( 1 + ( L x. E ) ) - 1 ) / ( 1 + ( L x. E ) ) ) = ( ( L x. E ) / ( 1 + ( L x. E ) ) ) ) | 
						
							| 208 |  | divid |  |-  ( ( ( 1 + ( L x. E ) ) e. CC /\ ( 1 + ( L x. E ) ) =/= 0 ) -> ( ( 1 + ( L x. E ) ) / ( 1 + ( L x. E ) ) ) = 1 ) | 
						
							| 209 | 201 208 | syl |  |-  ( ph -> ( ( 1 + ( L x. E ) ) / ( 1 + ( L x. E ) ) ) = 1 ) | 
						
							| 210 | 209 | oveq1d |  |-  ( ph -> ( ( ( 1 + ( L x. E ) ) / ( 1 + ( L x. E ) ) ) - ( 1 / ( 1 + ( L x. E ) ) ) ) = ( 1 - ( 1 / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 211 | 203 207 210 | 3eqtr3d |  |-  ( ph -> ( ( L x. E ) / ( 1 + ( L x. E ) ) ) = ( 1 - ( 1 / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 212 | 199 211 | breqtrd |  |-  ( ph -> ( ( L x. E ) / 2 ) < ( 1 - ( 1 / ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 213 | 170 171 116 | ltaddsubd |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) < 1 <-> ( ( L x. E ) / 2 ) < ( 1 - ( 1 / ( 1 + ( L x. E ) ) ) ) ) ) | 
						
							| 214 | 212 213 | mpbird |  |-  ( ph -> ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) < 1 ) | 
						
							| 215 | 172 116 38 214 | ltmul1dd |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) x. ( Z / V ) ) < ( 1 x. ( Z / V ) ) ) | 
						
							| 216 |  | reccl |  |-  ( ( ( 1 + ( L x. E ) ) e. CC /\ ( 1 + ( L x. E ) ) =/= 0 ) -> ( 1 / ( 1 + ( L x. E ) ) ) e. CC ) | 
						
							| 217 | 201 216 | syl |  |-  ( ph -> ( 1 / ( 1 + ( L x. E ) ) ) e. CC ) | 
						
							| 218 | 160 217 129 | adddird |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) x. ( Z / V ) ) = ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( ( 1 / ( 1 + ( L x. E ) ) ) x. ( Z / V ) ) ) ) | 
						
							| 219 | 200 114 | mulcomd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) = ( V x. ( 1 + ( L x. E ) ) ) ) | 
						
							| 220 | 219 | oveq2d |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) = ( Z / ( V x. ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 221 | 37 | rpcnd |  |-  ( ph -> Z e. CC ) | 
						
							| 222 | 21 | rpcnne0d |  |-  ( ph -> ( V e. CC /\ V =/= 0 ) ) | 
						
							| 223 |  | divdiv1 |  |-  ( ( Z e. CC /\ ( V e. CC /\ V =/= 0 ) /\ ( ( 1 + ( L x. E ) ) e. CC /\ ( 1 + ( L x. E ) ) =/= 0 ) ) -> ( ( Z / V ) / ( 1 + ( L x. E ) ) ) = ( Z / ( V x. ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 224 | 221 222 201 223 | syl3anc |  |-  ( ph -> ( ( Z / V ) / ( 1 + ( L x. E ) ) ) = ( Z / ( V x. ( 1 + ( L x. E ) ) ) ) ) | 
						
							| 225 | 49 | rpne0d |  |-  ( ph -> ( 1 + ( L x. E ) ) =/= 0 ) | 
						
							| 226 | 129 200 225 | divrec2d |  |-  ( ph -> ( ( Z / V ) / ( 1 + ( L x. E ) ) ) = ( ( 1 / ( 1 + ( L x. E ) ) ) x. ( Z / V ) ) ) | 
						
							| 227 | 220 224 226 | 3eqtr2d |  |-  ( ph -> ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) = ( ( 1 / ( 1 + ( L x. E ) ) ) x. ( Z / V ) ) ) | 
						
							| 228 | 227 | oveq2d |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) = ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( ( 1 / ( 1 + ( L x. E ) ) ) x. ( Z / V ) ) ) ) | 
						
							| 229 | 218 228 | eqtr4d |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) + ( 1 / ( 1 + ( L x. E ) ) ) ) x. ( Z / V ) ) = ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) | 
						
							| 230 | 129 | mullidd |  |-  ( ph -> ( 1 x. ( Z / V ) ) = ( Z / V ) ) | 
						
							| 231 | 215 229 230 | 3brtr3d |  |-  ( ph -> ( ( ( ( L x. E ) / 2 ) x. ( Z / V ) ) + ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) < ( Z / V ) ) | 
						
							| 232 | 60 68 39 169 231 | lelttrd |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) < ( Z / V ) ) | 
						
							| 233 |  | fllep1 |  |-  ( ( Z / V ) e. RR -> ( Z / V ) <_ ( ( |_ ` ( Z / V ) ) + 1 ) ) | 
						
							| 234 | 39 233 | syl |  |-  ( ph -> ( Z / V ) <_ ( ( |_ ` ( Z / V ) ) + 1 ) ) | 
						
							| 235 | 60 39 64 232 234 | ltletrd |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + 1 ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) < ( ( |_ ` ( Z / V ) ) + 1 ) ) | 
						
							| 236 | 57 235 | eqbrtrd |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) + 1 ) < ( ( |_ ` ( Z / V ) ) + 1 ) ) | 
						
							| 237 | 40 54 | readdcld |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) e. RR ) | 
						
							| 238 | 237 62 116 | ltadd1d |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) < ( |_ ` ( Z / V ) ) <-> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) + 1 ) < ( ( |_ ` ( Z / V ) ) + 1 ) ) ) | 
						
							| 239 | 236 238 | mpbird |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) < ( |_ ` ( Z / V ) ) ) | 
						
							| 240 | 40 54 62 | ltaddsubd |  |-  ( ph -> ( ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) + ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) < ( |_ ` ( Z / V ) ) <-> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) < ( ( |_ ` ( Z / V ) ) - ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) ) | 
						
							| 241 | 239 240 | mpbid |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) < ( ( |_ ` ( Z / V ) ) - ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 242 | 39 | flcld |  |-  ( ph -> ( |_ ` ( Z / V ) ) e. ZZ ) | 
						
							| 243 |  | fzval3 |  |-  ( ( |_ ` ( Z / V ) ) e. ZZ -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) | 
						
							| 244 | 242 243 | syl |  |-  ( ph -> ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ... ( |_ ` ( Z / V ) ) ) = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) | 
						
							| 245 | 24 244 | eqtrid |  |-  ( ph -> I = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) | 
						
							| 246 | 245 | fveq2d |  |-  ( ph -> ( # ` I ) = ( # ` ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) ) | 
						
							| 247 |  | flword2 |  |-  ( ( ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) e. RR /\ ( Z / V ) e. RR /\ ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) <_ ( Z / V ) ) -> ( |_ ` ( Z / V ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 248 | 52 39 125 247 | syl3anc |  |-  ( ph -> ( |_ ` ( Z / V ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 249 |  | eluzp1p1 |  |-  ( ( |_ ` ( Z / V ) ) e. ( ZZ>= ` ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) -> ( ( |_ ` ( Z / V ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) ) | 
						
							| 250 | 248 249 | syl |  |-  ( ph -> ( ( |_ ` ( Z / V ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) ) | 
						
							| 251 |  | hashfzo |  |-  ( ( ( |_ ` ( Z / V ) ) + 1 ) e. ( ZZ>= ` ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) -> ( # ` ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) = ( ( ( |_ ` ( Z / V ) ) + 1 ) - ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) ) | 
						
							| 252 | 250 251 | syl |  |-  ( ph -> ( # ` ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ..^ ( ( |_ ` ( Z / V ) ) + 1 ) ) ) = ( ( ( |_ ` ( Z / V ) ) + 1 ) - ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) ) | 
						
							| 253 | 62 | recnd |  |-  ( ph -> ( |_ ` ( Z / V ) ) e. CC ) | 
						
							| 254 | 253 55 56 | pnpcan2d |  |-  ( ph -> ( ( ( |_ ` ( Z / V ) ) + 1 ) - ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) + 1 ) ) = ( ( |_ ` ( Z / V ) ) - ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 255 | 246 252 254 | 3eqtrd |  |-  ( ph -> ( # ` I ) = ( ( |_ ` ( Z / V ) ) - ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. V ) ) ) ) ) | 
						
							| 256 | 241 255 | breqtrrd |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) < ( # ` I ) ) | 
						
							| 257 | 40 45 256 | ltled |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) <_ ( # ` I ) ) | 
						
							| 258 | 35 45 38 | lemuldivd |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) x. ( Z / V ) ) <_ ( # ` I ) <-> ( ( L x. E ) / 4 ) <_ ( ( # ` I ) / ( Z / V ) ) ) ) | 
						
							| 259 | 257 258 | mpbid |  |-  ( ph -> ( ( L x. E ) / 4 ) <_ ( ( # ` I ) / ( Z / V ) ) ) | 
						
							| 260 | 21 | rpred |  |-  ( ph -> V e. RR ) | 
						
							| 261 | 76 82 73 97 103 | ltletrd |  |-  ( ph -> ( ( 1 + ( L x. E ) ) x. V ) < ( sqrt ` Z ) ) | 
						
							| 262 | 260 76 73 122 261 | lttrd |  |-  ( ph -> V < ( sqrt ` Z ) ) | 
						
							| 263 | 260 73 262 | ltled |  |-  ( ph -> V <_ ( sqrt ` Z ) ) | 
						
							| 264 | 21 | rprege0d |  |-  ( ph -> ( V e. RR /\ 0 <_ V ) ) | 
						
							| 265 | 72 | rprege0d |  |-  ( ph -> ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) | 
						
							| 266 |  | le2sq |  |-  ( ( ( V e. RR /\ 0 <_ V ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( V <_ ( sqrt ` Z ) <-> ( V ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 267 | 264 265 266 | syl2anc |  |-  ( ph -> ( V <_ ( sqrt ` Z ) <-> ( V ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 268 | 263 267 | mpbid |  |-  ( ph -> ( V ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) | 
						
							| 269 |  | resqrtth |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 270 | 107 269 | syl |  |-  ( ph -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 271 | 268 270 | breqtrd |  |-  ( ph -> ( V ^ 2 ) <_ Z ) | 
						
							| 272 |  | 2z |  |-  2 e. ZZ | 
						
							| 273 |  | rpexpcl |  |-  ( ( V e. RR+ /\ 2 e. ZZ ) -> ( V ^ 2 ) e. RR+ ) | 
						
							| 274 | 21 272 273 | sylancl |  |-  ( ph -> ( V ^ 2 ) e. RR+ ) | 
						
							| 275 | 274 | rpred |  |-  ( ph -> ( V ^ 2 ) e. RR ) | 
						
							| 276 | 275 111 37 | lemul2d |  |-  ( ph -> ( ( V ^ 2 ) <_ Z <-> ( Z x. ( V ^ 2 ) ) <_ ( Z x. Z ) ) ) | 
						
							| 277 | 271 276 | mpbid |  |-  ( ph -> ( Z x. ( V ^ 2 ) ) <_ ( Z x. Z ) ) | 
						
							| 278 | 221 | sqvald |  |-  ( ph -> ( Z ^ 2 ) = ( Z x. Z ) ) | 
						
							| 279 | 277 278 | breqtrrd |  |-  ( ph -> ( Z x. ( V ^ 2 ) ) <_ ( Z ^ 2 ) ) | 
						
							| 280 | 111 | resqcld |  |-  ( ph -> ( Z ^ 2 ) e. RR ) | 
						
							| 281 | 111 280 274 | lemuldivd |  |-  ( ph -> ( ( Z x. ( V ^ 2 ) ) <_ ( Z ^ 2 ) <-> Z <_ ( ( Z ^ 2 ) / ( V ^ 2 ) ) ) ) | 
						
							| 282 | 279 281 | mpbid |  |-  ( ph -> Z <_ ( ( Z ^ 2 ) / ( V ^ 2 ) ) ) | 
						
							| 283 | 21 | rpne0d |  |-  ( ph -> V =/= 0 ) | 
						
							| 284 | 221 114 283 | sqdivd |  |-  ( ph -> ( ( Z / V ) ^ 2 ) = ( ( Z ^ 2 ) / ( V ^ 2 ) ) ) | 
						
							| 285 | 282 284 | breqtrrd |  |-  ( ph -> Z <_ ( ( Z / V ) ^ 2 ) ) | 
						
							| 286 |  | rpexpcl |  |-  ( ( ( Z / V ) e. RR+ /\ 2 e. ZZ ) -> ( ( Z / V ) ^ 2 ) e. RR+ ) | 
						
							| 287 | 38 272 286 | sylancl |  |-  ( ph -> ( ( Z / V ) ^ 2 ) e. RR+ ) | 
						
							| 288 | 37 287 | logled |  |-  ( ph -> ( Z <_ ( ( Z / V ) ^ 2 ) <-> ( log ` Z ) <_ ( log ` ( ( Z / V ) ^ 2 ) ) ) ) | 
						
							| 289 | 285 288 | mpbid |  |-  ( ph -> ( log ` Z ) <_ ( log ` ( ( Z / V ) ^ 2 ) ) ) | 
						
							| 290 |  | relogexp |  |-  ( ( ( Z / V ) e. RR+ /\ 2 e. ZZ ) -> ( log ` ( ( Z / V ) ^ 2 ) ) = ( 2 x. ( log ` ( Z / V ) ) ) ) | 
						
							| 291 | 38 272 290 | sylancl |  |-  ( ph -> ( log ` ( ( Z / V ) ^ 2 ) ) = ( 2 x. ( log ` ( Z / V ) ) ) ) | 
						
							| 292 | 289 291 | breqtrd |  |-  ( ph -> ( log ` Z ) <_ ( 2 x. ( log ` ( Z / V ) ) ) ) | 
						
							| 293 | 37 | relogcld |  |-  ( ph -> ( log ` Z ) e. RR ) | 
						
							| 294 | 38 | relogcld |  |-  ( ph -> ( log ` ( Z / V ) ) e. RR ) | 
						
							| 295 |  | ledivmul |  |-  ( ( ( log ` Z ) e. RR /\ ( log ` ( Z / V ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( log ` Z ) / 2 ) <_ ( log ` ( Z / V ) ) <-> ( log ` Z ) <_ ( 2 x. ( log ` ( Z / V ) ) ) ) ) | 
						
							| 296 | 293 294 193 195 295 | syl112anc |  |-  ( ph -> ( ( ( log ` Z ) / 2 ) <_ ( log ` ( Z / V ) ) <-> ( log ` Z ) <_ ( 2 x. ( log ` ( Z / V ) ) ) ) ) | 
						
							| 297 | 292 296 | mpbird |  |-  ( ph -> ( ( log ` Z ) / 2 ) <_ ( log ` ( Z / V ) ) ) | 
						
							| 298 | 34 | rprege0d |  |-  ( ph -> ( ( ( L x. E ) / 4 ) e. RR /\ 0 <_ ( ( L x. E ) / 4 ) ) ) | 
						
							| 299 | 45 38 | rerpdivcld |  |-  ( ph -> ( ( # ` I ) / ( Z / V ) ) e. RR ) | 
						
							| 300 | 36 | simp2d |  |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) | 
						
							| 301 | 300 | simp1d |  |-  ( ph -> 1 < Z ) | 
						
							| 302 | 111 301 | rplogcld |  |-  ( ph -> ( log ` Z ) e. RR+ ) | 
						
							| 303 | 302 | rphalfcld |  |-  ( ph -> ( ( log ` Z ) / 2 ) e. RR+ ) | 
						
							| 304 | 303 | rprege0d |  |-  ( ph -> ( ( ( log ` Z ) / 2 ) e. RR /\ 0 <_ ( ( log ` Z ) / 2 ) ) ) | 
						
							| 305 |  | lemul12a |  |-  ( ( ( ( ( ( L x. E ) / 4 ) e. RR /\ 0 <_ ( ( L x. E ) / 4 ) ) /\ ( ( # ` I ) / ( Z / V ) ) e. RR ) /\ ( ( ( ( log ` Z ) / 2 ) e. RR /\ 0 <_ ( ( log ` Z ) / 2 ) ) /\ ( log ` ( Z / V ) ) e. RR ) ) -> ( ( ( ( L x. E ) / 4 ) <_ ( ( # ` I ) / ( Z / V ) ) /\ ( ( log ` Z ) / 2 ) <_ ( log ` ( Z / V ) ) ) -> ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) <_ ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) ) | 
						
							| 306 | 298 299 304 294 305 | syl22anc |  |-  ( ph -> ( ( ( ( L x. E ) / 4 ) <_ ( ( # ` I ) / ( Z / V ) ) /\ ( ( log ` Z ) / 2 ) <_ ( log ` ( Z / V ) ) ) -> ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) <_ ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) ) | 
						
							| 307 | 259 297 306 | mp2and |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) <_ ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) | 
						
							| 308 | 302 | rpcnd |  |-  ( ph -> ( log ` Z ) e. CC ) | 
						
							| 309 |  | 8nn |  |-  8 e. NN | 
						
							| 310 |  | nnrp |  |-  ( 8 e. NN -> 8 e. RR+ ) | 
						
							| 311 | 309 310 | ax-mp |  |-  8 e. RR+ | 
						
							| 312 |  | rpcnne0 |  |-  ( 8 e. RR+ -> ( 8 e. CC /\ 8 =/= 0 ) ) | 
						
							| 313 | 311 312 | mp1i |  |-  ( ph -> ( 8 e. CC /\ 8 =/= 0 ) ) | 
						
							| 314 |  | div23 |  |-  ( ( ( L x. E ) e. CC /\ ( log ` Z ) e. CC /\ ( 8 e. CC /\ 8 =/= 0 ) ) -> ( ( ( L x. E ) x. ( log ` Z ) ) / 8 ) = ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) | 
						
							| 315 | 150 308 313 314 | syl3anc |  |-  ( ph -> ( ( ( L x. E ) x. ( log ` Z ) ) / 8 ) = ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) | 
						
							| 316 |  | divmuldiv |  |-  ( ( ( ( L x. E ) e. CC /\ ( log ` Z ) e. CC ) /\ ( ( 4 e. CC /\ 4 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) -> ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) = ( ( ( L x. E ) x. ( log ` Z ) ) / ( 4 x. 2 ) ) ) | 
						
							| 317 | 150 308 143 153 316 | syl22anc |  |-  ( ph -> ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) = ( ( ( L x. E ) x. ( log ` Z ) ) / ( 4 x. 2 ) ) ) | 
						
							| 318 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 319 | 318 | oveq2i |  |-  ( ( ( L x. E ) x. ( log ` Z ) ) / ( 4 x. 2 ) ) = ( ( ( L x. E ) x. ( log ` Z ) ) / 8 ) | 
						
							| 320 | 317 319 | eqtr2di |  |-  ( ph -> ( ( ( L x. E ) x. ( log ` Z ) ) / 8 ) = ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) ) | 
						
							| 321 | 315 320 | eqtr3d |  |-  ( ph -> ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) = ( ( ( L x. E ) / 4 ) x. ( ( log ` Z ) / 2 ) ) ) | 
						
							| 322 | 45 | recnd |  |-  ( ph -> ( # ` I ) e. CC ) | 
						
							| 323 | 294 | recnd |  |-  ( ph -> ( log ` ( Z / V ) ) e. CC ) | 
						
							| 324 | 38 | rpcnne0d |  |-  ( ph -> ( ( Z / V ) e. CC /\ ( Z / V ) =/= 0 ) ) | 
						
							| 325 |  | divass |  |-  ( ( ( # ` I ) e. CC /\ ( log ` ( Z / V ) ) e. CC /\ ( ( Z / V ) e. CC /\ ( Z / V ) =/= 0 ) ) -> ( ( ( # ` I ) x. ( log ` ( Z / V ) ) ) / ( Z / V ) ) = ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) | 
						
							| 326 |  | div23 |  |-  ( ( ( # ` I ) e. CC /\ ( log ` ( Z / V ) ) e. CC /\ ( ( Z / V ) e. CC /\ ( Z / V ) =/= 0 ) ) -> ( ( ( # ` I ) x. ( log ` ( Z / V ) ) ) / ( Z / V ) ) = ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) | 
						
							| 327 | 325 326 | eqtr3d |  |-  ( ( ( # ` I ) e. CC /\ ( log ` ( Z / V ) ) e. CC /\ ( ( Z / V ) e. CC /\ ( Z / V ) =/= 0 ) ) -> ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) = ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) | 
						
							| 328 | 322 323 324 327 | syl3anc |  |-  ( ph -> ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) = ( ( ( # ` I ) / ( Z / V ) ) x. ( log ` ( Z / V ) ) ) ) | 
						
							| 329 | 307 321 328 | 3brtr4d |  |-  ( ph -> ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) <_ ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) | 
						
							| 330 |  | rpdivcl |  |-  ( ( ( L x. E ) e. RR+ /\ 8 e. RR+ ) -> ( ( L x. E ) / 8 ) e. RR+ ) | 
						
							| 331 | 29 311 330 | sylancl |  |-  ( ph -> ( ( L x. E ) / 8 ) e. RR+ ) | 
						
							| 332 | 331 302 | rpmulcld |  |-  ( ph -> ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) e. RR+ ) | 
						
							| 333 | 332 | rpred |  |-  ( ph -> ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) e. RR ) | 
						
							| 334 | 294 38 | rerpdivcld |  |-  ( ph -> ( ( log ` ( Z / V ) ) / ( Z / V ) ) e. RR ) | 
						
							| 335 | 45 334 | remulcld |  |-  ( ph -> ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) e. RR ) | 
						
							| 336 | 183 | simp3d |  |-  ( ph -> ( U - E ) e. RR+ ) | 
						
							| 337 | 333 335 336 | lemul2d |  |-  ( ph -> ( ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) <_ ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) <-> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ ( ( U - E ) x. ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) ) ) | 
						
							| 338 | 329 337 | mpbid |  |-  ( ph -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ ( ( U - E ) x. ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) ) | 
						
							| 339 | 336 | rpcnd |  |-  ( ph -> ( U - E ) e. CC ) | 
						
							| 340 | 334 | recnd |  |-  ( ph -> ( ( log ` ( Z / V ) ) / ( Z / V ) ) e. CC ) | 
						
							| 341 | 339 322 340 | mul12d |  |-  ( ph -> ( ( U - E ) x. ( ( # ` I ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) = ( ( # ` I ) x. ( ( U - E ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) ) | 
						
							| 342 | 338 341 | breqtrd |  |-  ( ph -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ ( ( # ` I ) x. ( ( U - E ) x. ( ( log ` ( Z / V ) ) / ( Z / V ) ) ) ) ) |