Metamath Proof Explorer


Theorem pntlemr

Description: Lemma for pntlemj . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
pntlem1.o O=ZKJ+1+1ZKJ
pntlem1.v φV+
pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
pntlem1.j φJM..^N
pntlem1.i I=Z1+LEV+1ZV
Assertion pntlemr φUELE8logZIUElogZVZV

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 pntlem1.o O=ZKJ+1+1ZKJ
21 pntlem1.v φV+
22 pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
23 pntlem1.j φJM..^N
24 pntlem1.i I=Z1+LEV+1ZV
25 1 2 3 4 5 6 pntlemd φL+D+F+
26 25 simp1d φL+
27 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
28 27 simp1d φE+
29 26 28 rpmulcld φLE+
30 4re 4
31 4pos 0<4
32 30 31 elrpii 4+
33 rpdivcl LE+4+LE4+
34 29 32 33 sylancl φLE4+
35 34 rpred φLE4
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
37 36 simp1d φZ+
38 37 21 rpdivcld φZV+
39 38 rpred φZV
40 35 39 remulcld φLE4ZV
41 fzfid φZ1+LEV+1ZVFin
42 24 41 eqeltrid φIFin
43 hashcl IFinI0
44 42 43 syl φI0
45 44 nn0red φI
46 40 recnd φLE4ZV
47 1rp 1+
48 rpaddcl 1+LE+1+LE+
49 47 29 48 sylancr φ1+LE+
50 49 21 rpmulcld φ1+LEV+
51 37 50 rpdivcld φZ1+LEV+
52 51 rpred φZ1+LEV
53 reflcl Z1+LEVZ1+LEV
54 52 53 syl φZ1+LEV
55 54 recnd φZ1+LEV
56 1cnd φ1
57 46 55 56 add32d φLE4ZV+Z1+LEV+1=LE4ZV+1+Z1+LEV
58 peano2re LE4ZVLE4ZV+1
59 40 58 syl φLE4ZV+1
60 59 54 readdcld φLE4ZV+1+Z1+LEV
61 reflcl ZVZV
62 39 61 syl φZV
63 peano2re ZVZV+1
64 62 63 syl φZV+1
65 29 rphalfcld φLE2+
66 65 38 rpmulcld φLE2ZV+
67 66 rpred φLE2ZV
68 67 52 readdcld φLE2ZV+Z1+LEV
69 rpdivcl 4+LE+4LE+
70 32 29 69 sylancr φ4LE+
71 70 rpred φ4LE
72 37 rpsqrtcld φZ+
73 72 rpred φZ
74 36 simp3d φ4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
75 74 simp1d φ4LEZ
76 50 rpred φ1+LEV
77 27 simp2d φK+
78 elfzoelz JM..^NJ
79 23 78 syl φJ
80 79 peano2zd φJ+1
81 77 80 rpexpcld φKJ+1+
82 81 rpred φKJ+1
83 22 simplrd φ1+LEV<KKJ
84 77 rpcnd φK
85 77 79 rpexpcld φKJ+
86 85 rpcnd φKJ
87 84 86 mulcomd φKKJ=KJK
88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φMNMlogZlogK4NM
89 88 simp1d φM
90 elfzouz JM..^NJM
91 23 90 syl φJM
92 eluznn MJMJ
93 89 91 92 syl2anc φJ
94 93 nnnn0d φJ0
95 84 94 expp1d φKJ+1=KJK
96 87 95 eqtr4d φKKJ=KJ+1
97 83 96 breqtrd φ1+LEV<KJ+1
98 76 82 97 ltled φ1+LEVKJ+1
99 fzofzp1 JM..^NJ+1MN
100 23 99 syl φJ+1MN
101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φJ+1MNX<KJ+1KJ+1Z
102 100 101 mpdan φX<KJ+1KJ+1Z
103 102 simprd φKJ+1Z
104 76 82 73 98 103 letrd φ1+LEVZ
105 76 73 72 lemul2d φ1+LEVZZ1+LEVZZ
106 104 105 mpbid φZ1+LEVZZ
107 37 rprege0d φZ0Z
108 remsqsqrt Z0ZZZ=Z
109 107 108 syl φZZ=Z
110 106 109 breqtrd φZ1+LEVZ
111 37 rpred φZ
112 73 111 50 lemuldivd φZ1+LEVZZZ1+LEV
113 110 112 mpbid φZZ1+LEV
114 21 rpcnd φV
115 114 mullidd φ1V=V
116 1red φ1
117 49 rpred φ1+LE
118 1re 1
119 ltaddrp 1LE+1<1+LE
120 118 29 119 sylancr φ1<1+LE
121 116 117 21 120 ltmul1dd φ1V<1+LEV
122 115 121 eqbrtrrd φV<1+LEV
123 21 50 37 ltdiv2d φV<1+LEVZ1+LEV<ZV
124 122 123 mpbid φZ1+LEV<ZV
125 52 39 124 ltled φZ1+LEVZV
126 73 52 39 113 125 letrd φZZV
127 71 73 39 75 126 letrd φ4LEZV
128 71 39 39 127 leadd2dd φZV+4LEZV+ZV
129 38 rpcnd φZV
130 129 2timesd φ2ZV=ZV+ZV
131 128 130 breqtrrd φZV+4LE2ZV
132 39 71 readdcld φZV+4LE
133 2re 2
134 remulcl 2ZV2ZV
135 133 39 134 sylancr φ2ZV
136 132 135 34 lemul2d φZV+4LE2ZVLE4ZV+4LELE42ZV
137 131 136 mpbid φLE4ZV+4LELE42ZV
138 34 rpcnd φLE4
139 70 rpcnd φ4LE
140 138 129 139 adddid φLE4ZV+4LE=LE4ZV+LE44LE
141 29 rpcnne0d φLELE0
142 rpcnne0 4+440
143 32 142 mp1i φ440
144 divcan6 LELE0440LE44LE=1
145 141 143 144 syl2anc φLE44LE=1
146 145 oveq2d φLE4ZV+LE44LE=LE4ZV+1
147 140 146 eqtrd φLE4ZV+4LE=LE4ZV+1
148 2cnd φ2
149 138 148 129 mulassd φLE42ZV=LE42ZV
150 29 rpcnd φLE
151 2rp 2+
152 rpcnne0 2+220
153 151 152 mp1i φ220
154 divdiv1 LE220220LE22=LE22
155 150 153 153 154 syl3anc φLE22=LE22
156 2t2e4 22=4
157 156 oveq2i LE22=LE4
158 155 157 eqtr2di φLE4=LE22
159 158 oveq1d φLE42=LE222
160 150 halfcld φLE2
161 153 simprd φ20
162 160 148 161 divcan1d φLE222=LE2
163 159 162 eqtrd φLE42=LE2
164 163 oveq1d φLE42ZV=LE2ZV
165 149 164 eqtr3d φLE42ZV=LE2ZV
166 137 147 165 3brtr3d φLE4ZV+1LE2ZV
167 flle Z1+LEVZ1+LEVZ1+LEV
168 52 167 syl φZ1+LEVZ1+LEV
169 59 54 67 52 166 168 le2addd φLE4ZV+1+Z1+LEVLE2ZV+Z1+LEV
170 65 rpred φLE2
171 49 rprecred φ11+LE
172 170 171 readdcld φLE2+11+LE
173 29 rpred φLE
174 28 rpred φE
175 26 rpred φL
176 eliooord L010<LL<1
177 4 176 syl φ0<LL<1
178 177 simprd φL<1
179 175 116 28 178 ltmul1dd φLE<1E
180 28 rpcnd φE
181 180 mullidd φ1E=E
182 179 181 breqtrd φLE<E
183 27 simp3d φE011<KUE+
184 183 simp1d φE01
185 eliooord E010<EE<1
186 184 185 syl φ0<EE<1
187 186 simprd φE<1
188 173 174 116 182 187 lttrd φLE<1
189 173 116 116 188 ltadd2dd φ1+LE<1+1
190 df-2 2=1+1
191 189 190 breqtrrdi φ1+LE<2
192 49 rpregt0d φ1+LE0<1+LE
193 133 a1i φ2
194 2pos 0<2
195 194 a1i φ0<2
196 29 rpregt0d φLE0<LE
197 ltdiv2 1+LE0<1+LE20<2LE0<LE1+LE<2LE2<LE1+LE
198 192 193 195 196 197 syl121anc φ1+LE<2LE2<LE1+LE
199 191 198 mpbid φLE2<LE1+LE
200 49 rpcnd φ1+LE
201 49 rpcnne0d φ1+LE1+LE0
202 divsubdir 1+LE11+LE1+LE01+LE-11+LE=1+LE1+LE11+LE
203 200 56 201 202 syl3anc φ1+LE-11+LE=1+LE1+LE11+LE
204 ax-1cn 1
205 pncan2 1LE1+LE-1=LE
206 204 150 205 sylancr φ1+LE-1=LE
207 206 oveq1d φ1+LE-11+LE=LE1+LE
208 divid 1+LE1+LE01+LE1+LE=1
209 201 208 syl φ1+LE1+LE=1
210 209 oveq1d φ1+LE1+LE11+LE=111+LE
211 203 207 210 3eqtr3d φLE1+LE=111+LE
212 199 211 breqtrd φLE2<111+LE
213 170 171 116 ltaddsubd φLE2+11+LE<1LE2<111+LE
214 212 213 mpbird φLE2+11+LE<1
215 172 116 38 214 ltmul1dd φLE2+11+LEZV<1ZV
216 reccl 1+LE1+LE011+LE
217 201 216 syl φ11+LE
218 160 217 129 adddird φLE2+11+LEZV=LE2ZV+11+LEZV
219 200 114 mulcomd φ1+LEV=V1+LE
220 219 oveq2d φZ1+LEV=ZV1+LE
221 37 rpcnd φZ
222 21 rpcnne0d φVV0
223 divdiv1 ZVV01+LE1+LE0ZV1+LE=ZV1+LE
224 221 222 201 223 syl3anc φZV1+LE=ZV1+LE
225 49 rpne0d φ1+LE0
226 129 200 225 divrec2d φZV1+LE=11+LEZV
227 220 224 226 3eqtr2d φZ1+LEV=11+LEZV
228 227 oveq2d φLE2ZV+Z1+LEV=LE2ZV+11+LEZV
229 218 228 eqtr4d φLE2+11+LEZV=LE2ZV+Z1+LEV
230 129 mullidd φ1ZV=ZV
231 215 229 230 3brtr3d φLE2ZV+Z1+LEV<ZV
232 60 68 39 169 231 lelttrd φLE4ZV+1+Z1+LEV<ZV
233 fllep1 ZVZVZV+1
234 39 233 syl φZVZV+1
235 60 39 64 232 234 ltletrd φLE4ZV+1+Z1+LEV<ZV+1
236 57 235 eqbrtrd φLE4ZV+Z1+LEV+1<ZV+1
237 40 54 readdcld φLE4ZV+Z1+LEV
238 237 62 116 ltadd1d φLE4ZV+Z1+LEV<ZVLE4ZV+Z1+LEV+1<ZV+1
239 236 238 mpbird φLE4ZV+Z1+LEV<ZV
240 40 54 62 ltaddsubd φLE4ZV+Z1+LEV<ZVLE4ZV<ZVZ1+LEV
241 239 240 mpbid φLE4ZV<ZVZ1+LEV
242 39 flcld φZV
243 fzval3 ZVZ1+LEV+1ZV=Z1+LEV+1..^ZV+1
244 242 243 syl φZ1+LEV+1ZV=Z1+LEV+1..^ZV+1
245 24 244 eqtrid φI=Z1+LEV+1..^ZV+1
246 245 fveq2d φI=Z1+LEV+1..^ZV+1
247 flword2 Z1+LEVZVZ1+LEVZVZVZ1+LEV
248 52 39 125 247 syl3anc φZVZ1+LEV
249 eluzp1p1 ZVZ1+LEVZV+1Z1+LEV+1
250 248 249 syl φZV+1Z1+LEV+1
251 hashfzo ZV+1Z1+LEV+1Z1+LEV+1..^ZV+1=ZV+1-Z1+LEV+1
252 250 251 syl φZ1+LEV+1..^ZV+1=ZV+1-Z1+LEV+1
253 62 recnd φZV
254 253 55 56 pnpcan2d φZV+1-Z1+LEV+1=ZVZ1+LEV
255 246 252 254 3eqtrd φI=ZVZ1+LEV
256 241 255 breqtrrd φLE4ZV<I
257 40 45 256 ltled φLE4ZVI
258 35 45 38 lemuldivd φLE4ZVILE4IZV
259 257 258 mpbid φLE4IZV
260 21 rpred φV
261 76 82 73 97 103 ltletrd φ1+LEV<Z
262 260 76 73 122 261 lttrd φV<Z
263 260 73 262 ltled φVZ
264 21 rprege0d φV0V
265 72 rprege0d φZ0Z
266 le2sq V0VZ0ZVZV2Z2
267 264 265 266 syl2anc φVZV2Z2
268 263 267 mpbid φV2Z2
269 resqrtth Z0ZZ2=Z
270 107 269 syl φZ2=Z
271 268 270 breqtrd φV2Z
272 2z 2
273 rpexpcl V+2V2+
274 21 272 273 sylancl φV2+
275 274 rpred φV2
276 275 111 37 lemul2d φV2ZZV2ZZ
277 271 276 mpbid φZV2ZZ
278 221 sqvald φZ2=ZZ
279 277 278 breqtrrd φZV2Z2
280 111 resqcld φZ2
281 111 280 274 lemuldivd φZV2Z2ZZ2V2
282 279 281 mpbid φZZ2V2
283 21 rpne0d φV0
284 221 114 283 sqdivd φZV2=Z2V2
285 282 284 breqtrrd φZZV2
286 rpexpcl ZV+2ZV2+
287 38 272 286 sylancl φZV2+
288 37 287 logled φZZV2logZlogZV2
289 285 288 mpbid φlogZlogZV2
290 relogexp ZV+2logZV2=2logZV
291 38 272 290 sylancl φlogZV2=2logZV
292 289 291 breqtrd φlogZ2logZV
293 37 relogcld φlogZ
294 38 relogcld φlogZV
295 ledivmul logZlogZV20<2logZ2logZVlogZ2logZV
296 293 294 193 195 295 syl112anc φlogZ2logZVlogZ2logZV
297 292 296 mpbird φlogZ2logZV
298 34 rprege0d φLE40LE4
299 45 38 rerpdivcld φIZV
300 36 simp2d φ1<ZeZZZY
301 300 simp1d φ1<Z
302 111 301 rplogcld φlogZ+
303 302 rphalfcld φlogZ2+
304 303 rprege0d φlogZ20logZ2
305 lemul12a LE40LE4IZVlogZ20logZ2logZVLE4IZVlogZ2logZVLE4logZ2IZVlogZV
306 298 299 304 294 305 syl22anc φLE4IZVlogZ2logZVLE4logZ2IZVlogZV
307 259 297 306 mp2and φLE4logZ2IZVlogZV
308 302 rpcnd φlogZ
309 8nn 8
310 nnrp 88+
311 309 310 ax-mp 8+
312 rpcnne0 8+880
313 311 312 mp1i φ880
314 div23 LElogZ880LElogZ8=LE8logZ
315 150 308 313 314 syl3anc φLElogZ8=LE8logZ
316 divmuldiv LElogZ440220LE4logZ2=LElogZ42
317 150 308 143 153 316 syl22anc φLE4logZ2=LElogZ42
318 4t2e8 42=8
319 318 oveq2i LElogZ42=LElogZ8
320 317 319 eqtr2di φLElogZ8=LE4logZ2
321 315 320 eqtr3d φLE8logZ=LE4logZ2
322 45 recnd φI
323 294 recnd φlogZV
324 38 rpcnne0d φZVZV0
325 divass IlogZVZVZV0IlogZVZV=IlogZVZV
326 div23 IlogZVZVZV0IlogZVZV=IZVlogZV
327 325 326 eqtr3d IlogZVZVZV0IlogZVZV=IZVlogZV
328 322 323 324 327 syl3anc φIlogZVZV=IZVlogZV
329 307 321 328 3brtr4d φLE8logZIlogZVZV
330 rpdivcl LE+8+LE8+
331 29 311 330 sylancl φLE8+
332 331 302 rpmulcld φLE8logZ+
333 332 rpred φLE8logZ
334 294 38 rerpdivcld φlogZVZV
335 45 334 remulcld φIlogZVZV
336 183 simp3d φUE+
337 333 335 336 lemul2d φLE8logZIlogZVZVUELE8logZUEIlogZVZV
338 329 337 mpbid φUELE8logZUEIlogZVZV
339 336 rpcnd φUE
340 334 recnd φlogZVZV
341 339 322 340 mul12d φUEIlogZVZV=IUElogZVZV
342 338 341 breqtrd φUELE8logZIUElogZVZV