| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrelsr |
|- |
| 2 |
1
|
brel |
|- ( 0R ( 0R e. R. /\ A e. R. ) ) |
| 3 |
2
|
simprd |
|- ( 0R A e. R. ) |
| 4 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
| 5 |
|
breq2 |
|- ( [ <. y , z >. ] ~R = A -> ( 0R . ] ~R <-> 0R |
| 6 |
|
oveq1 |
|- ( [ <. y , z >. ] ~R = A -> ( [ <. y , z >. ] ~R .R x ) = ( A .R x ) ) |
| 7 |
6
|
eqeq1d |
|- ( [ <. y , z >. ] ~R = A -> ( ( [ <. y , z >. ] ~R .R x ) = 1R <-> ( A .R x ) = 1R ) ) |
| 8 |
7
|
rexbidv |
|- ( [ <. y , z >. ] ~R = A -> ( E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R <-> E. x e. R. ( A .R x ) = 1R ) ) |
| 9 |
5 8
|
imbi12d |
|- ( [ <. y , z >. ] ~R = A -> ( ( 0R . ] ~R -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) <-> ( 0R E. x e. R. ( A .R x ) = 1R ) ) ) |
| 10 |
|
gt0srpr |
|- ( 0R . ] ~R <-> z |
| 11 |
|
ltexpri |
|- ( z E. w e. P. ( z +P. w ) = y ) |
| 12 |
10 11
|
sylbi |
|- ( 0R . ] ~R -> E. w e. P. ( z +P. w ) = y ) |
| 13 |
|
recexpr |
|- ( w e. P. -> E. v e. P. ( w .P. v ) = 1P ) |
| 14 |
|
1pr |
|- 1P e. P. |
| 15 |
|
addclpr |
|- ( ( v e. P. /\ 1P e. P. ) -> ( v +P. 1P ) e. P. ) |
| 16 |
14 15
|
mpan2 |
|- ( v e. P. -> ( v +P. 1P ) e. P. ) |
| 17 |
|
enrex |
|- ~R e. _V |
| 18 |
17 4
|
ecopqsi |
|- ( ( ( v +P. 1P ) e. P. /\ 1P e. P. ) -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 19 |
16 14 18
|
sylancl |
|- ( v e. P. -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 20 |
19
|
ad2antlr |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. ) |
| 21 |
16 14
|
jctir |
|- ( v e. P. -> ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) |
| 22 |
21
|
anim2i |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) ) |
| 24 |
|
mulsrpr |
|- ( ( ( y e. P. /\ z e. P. ) /\ ( ( v +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R ) |
| 25 |
23 24
|
syl |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R ) |
| 26 |
|
oveq1 |
|- ( ( z +P. w ) = y -> ( ( z +P. w ) .P. v ) = ( y .P. v ) ) |
| 27 |
26
|
eqcomd |
|- ( ( z +P. w ) = y -> ( y .P. v ) = ( ( z +P. w ) .P. v ) ) |
| 28 |
|
vex |
|- z e. _V |
| 29 |
|
vex |
|- w e. _V |
| 30 |
|
vex |
|- v e. _V |
| 31 |
|
mulcompr |
|- ( u .P. f ) = ( f .P. u ) |
| 32 |
|
distrpr |
|- ( u .P. ( f +P. x ) ) = ( ( u .P. f ) +P. ( u .P. x ) ) |
| 33 |
28 29 30 31 32
|
caovdir |
|- ( ( z +P. w ) .P. v ) = ( ( z .P. v ) +P. ( w .P. v ) ) |
| 34 |
|
oveq2 |
|- ( ( w .P. v ) = 1P -> ( ( z .P. v ) +P. ( w .P. v ) ) = ( ( z .P. v ) +P. 1P ) ) |
| 35 |
33 34
|
eqtrid |
|- ( ( w .P. v ) = 1P -> ( ( z +P. w ) .P. v ) = ( ( z .P. v ) +P. 1P ) ) |
| 36 |
27 35
|
sylan9eqr |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( y .P. v ) = ( ( z .P. v ) +P. 1P ) ) |
| 37 |
36
|
oveq1d |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. 1P ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) ) |
| 38 |
|
ovex |
|- ( z .P. v ) e. _V |
| 39 |
14
|
elexi |
|- 1P e. _V |
| 40 |
|
ovex |
|- ( ( y .P. 1P ) +P. ( z .P. 1P ) ) e. _V |
| 41 |
|
addcompr |
|- ( u +P. f ) = ( f +P. u ) |
| 42 |
|
addasspr |
|- ( ( u +P. f ) +P. x ) = ( u +P. ( f +P. x ) ) |
| 43 |
38 39 40 41 42
|
caov32 |
|- ( ( ( z .P. v ) +P. 1P ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) |
| 44 |
37 43
|
eqtrdi |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) ) |
| 45 |
44
|
oveq1d |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) = ( ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) +P. 1P ) ) |
| 46 |
|
addasspr |
|- ( ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) +P. 1P ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) |
| 47 |
45 46
|
eqtrdi |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) |
| 48 |
|
distrpr |
|- ( y .P. ( v +P. 1P ) ) = ( ( y .P. v ) +P. ( y .P. 1P ) ) |
| 49 |
48
|
oveq1i |
|- ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( ( y .P. v ) +P. ( y .P. 1P ) ) +P. ( z .P. 1P ) ) |
| 50 |
|
addasspr |
|- ( ( ( y .P. v ) +P. ( y .P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 51 |
49 50
|
eqtri |
|- ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) = ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 52 |
51
|
oveq1i |
|- ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. 1P ) |
| 53 |
|
distrpr |
|- ( z .P. ( v +P. 1P ) ) = ( ( z .P. v ) +P. ( z .P. 1P ) ) |
| 54 |
53
|
oveq2i |
|- ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) = ( ( y .P. 1P ) +P. ( ( z .P. v ) +P. ( z .P. 1P ) ) ) |
| 55 |
|
ovex |
|- ( y .P. 1P ) e. _V |
| 56 |
|
ovex |
|- ( z .P. 1P ) e. _V |
| 57 |
55 38 56 41 42
|
caov12 |
|- ( ( y .P. 1P ) +P. ( ( z .P. v ) +P. ( z .P. 1P ) ) ) = ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 58 |
54 57
|
eqtri |
|- ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) = ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) |
| 59 |
58
|
oveq1i |
|- ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) = ( ( ( z .P. v ) +P. ( ( y .P. 1P ) +P. ( z .P. 1P ) ) ) +P. ( 1P +P. 1P ) ) |
| 60 |
47 52 59
|
3eqtr4g |
|- ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) |
| 61 |
|
mulclpr |
|- ( ( y e. P. /\ ( v +P. 1P ) e. P. ) -> ( y .P. ( v +P. 1P ) ) e. P. ) |
| 62 |
16 61
|
sylan2 |
|- ( ( y e. P. /\ v e. P. ) -> ( y .P. ( v +P. 1P ) ) e. P. ) |
| 63 |
|
mulclpr |
|- ( ( z e. P. /\ 1P e. P. ) -> ( z .P. 1P ) e. P. ) |
| 64 |
14 63
|
mpan2 |
|- ( z e. P. -> ( z .P. 1P ) e. P. ) |
| 65 |
|
addclpr |
|- ( ( ( y .P. ( v +P. 1P ) ) e. P. /\ ( z .P. 1P ) e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
| 66 |
62 64 65
|
syl2an |
|- ( ( ( y e. P. /\ v e. P. ) /\ z e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
| 67 |
66
|
an32s |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. ) |
| 68 |
|
mulclpr |
|- ( ( y e. P. /\ 1P e. P. ) -> ( y .P. 1P ) e. P. ) |
| 69 |
14 68
|
mpan2 |
|- ( y e. P. -> ( y .P. 1P ) e. P. ) |
| 70 |
|
mulclpr |
|- ( ( z e. P. /\ ( v +P. 1P ) e. P. ) -> ( z .P. ( v +P. 1P ) ) e. P. ) |
| 71 |
16 70
|
sylan2 |
|- ( ( z e. P. /\ v e. P. ) -> ( z .P. ( v +P. 1P ) ) e. P. ) |
| 72 |
|
addclpr |
|- ( ( ( y .P. 1P ) e. P. /\ ( z .P. ( v +P. 1P ) ) e. P. ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
| 73 |
69 71 72
|
syl2an |
|- ( ( y e. P. /\ ( z e. P. /\ v e. P. ) ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
| 74 |
73
|
anassrs |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) |
| 75 |
67 74
|
jca |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. /\ ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) ) |
| 76 |
|
addclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
| 77 |
14 14 76
|
mp2an |
|- ( 1P +P. 1P ) e. P. |
| 78 |
77 14
|
pm3.2i |
|- ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) |
| 79 |
|
enreceq |
|- ( ( ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) e. P. /\ ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R <-> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) ) |
| 80 |
75 78 79
|
sylancl |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R <-> ( ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) +P. 1P ) = ( ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) +P. ( 1P +P. 1P ) ) ) ) |
| 81 |
60 80
|
imbitrrid |
|- ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) -> ( ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) -> [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) ) |
| 82 |
81
|
imp |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> [ <. ( ( y .P. ( v +P. 1P ) ) +P. ( z .P. 1P ) ) , ( ( y .P. 1P ) +P. ( z .P. ( v +P. 1P ) ) ) >. ] ~R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 83 |
25 82
|
eqtrd |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 84 |
|
df-1r |
|- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
| 85 |
83 84
|
eqtr4di |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) |
| 86 |
|
oveq2 |
|- ( x = [ <. ( v +P. 1P ) , 1P >. ] ~R -> ( [ <. y , z >. ] ~R .R x ) = ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) ) |
| 87 |
86
|
eqeq1d |
|- ( x = [ <. ( v +P. 1P ) , 1P >. ] ~R -> ( ( [ <. y , z >. ] ~R .R x ) = 1R <-> ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) ) |
| 88 |
87
|
rspcev |
|- ( ( [ <. ( v +P. 1P ) , 1P >. ] ~R e. R. /\ ( [ <. y , z >. ] ~R .R [ <. ( v +P. 1P ) , 1P >. ] ~R ) = 1R ) -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) |
| 89 |
20 85 88
|
syl2anc |
|- ( ( ( ( y e. P. /\ z e. P. ) /\ v e. P. ) /\ ( ( w .P. v ) = 1P /\ ( z +P. w ) = y ) ) -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) |
| 90 |
89
|
exp43 |
|- ( ( y e. P. /\ z e. P. ) -> ( v e. P. -> ( ( w .P. v ) = 1P -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) ) |
| 91 |
90
|
rexlimdv |
|- ( ( y e. P. /\ z e. P. ) -> ( E. v e. P. ( w .P. v ) = 1P -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) |
| 92 |
13 91
|
syl5 |
|- ( ( y e. P. /\ z e. P. ) -> ( w e. P. -> ( ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) ) |
| 93 |
92
|
rexlimdv |
|- ( ( y e. P. /\ z e. P. ) -> ( E. w e. P. ( z +P. w ) = y -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) |
| 94 |
12 93
|
syl5 |
|- ( ( y e. P. /\ z e. P. ) -> ( 0R . ] ~R -> E. x e. R. ( [ <. y , z >. ] ~R .R x ) = 1R ) ) |
| 95 |
4 9 94
|
ecoptocl |
|- ( A e. R. -> ( 0R E. x e. R. ( A .R x ) = 1R ) ) |
| 96 |
3 95
|
mpcom |
|- ( 0R E. x e. R. ( A .R x ) = 1R ) |