Metamath Proof Explorer


Theorem 1arymaptf1

Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h No typesetting found for |- H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) ) with typecode |-
Assertion 1arymaptf1 Could not format assertion : No typesetting found for |- ( X e. V -> H : ( 1 -aryF X ) -1-1-> ( X ^m X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 1arymaptfv.h Could not format H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) ) : No typesetting found for |- H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) ) with typecode |-
2 1 1arymaptf Could not format ( X e. V -> H : ( 1 -aryF X ) --> ( X ^m X ) ) : No typesetting found for |- ( X e. V -> H : ( 1 -aryF X ) --> ( X ^m X ) ) with typecode |-
3 1 1arymaptfv Could not format ( f e. ( 1 -aryF X ) -> ( H ` f ) = ( x e. X |-> ( f ` { <. 0 , x >. } ) ) ) : No typesetting found for |- ( f e. ( 1 -aryF X ) -> ( H ` f ) = ( x e. X |-> ( f ` { <. 0 , x >. } ) ) ) with typecode |-
4 3 ad2antrl Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( H ` f ) = ( x e. X |-> ( f ` { <. 0 , x >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( H ` f ) = ( x e. X |-> ( f ` { <. 0 , x >. } ) ) ) with typecode |-
5 1 1arymaptfv Could not format ( g e. ( 1 -aryF X ) -> ( H ` g ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) : No typesetting found for |- ( g e. ( 1 -aryF X ) -> ( H ` g ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) with typecode |-
6 5 ad2antll Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( H ` g ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( H ` g ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) with typecode |-
7 4 6 eqeq12d Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) <-> ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) <-> ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) ) ) with typecode |-
8 fvex f0xV
9 8 rgenw xXf0xV
10 mpteqb xXf0xVxXf0x=xXg0xxXf0x=g0x
11 9 10 mp1i Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) <-> A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) <-> A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) ) ) with typecode |-
12 1aryfvalel Could not format ( X e. V -> ( f e. ( 1 -aryF X ) <-> f : ( X ^m { 0 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( f e. ( 1 -aryF X ) <-> f : ( X ^m { 0 } ) --> X ) ) with typecode |-
13 1aryfvalel Could not format ( X e. V -> ( g e. ( 1 -aryF X ) <-> g : ( X ^m { 0 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( g e. ( 1 -aryF X ) <-> g : ( X ^m { 0 } ) --> X ) ) with typecode |-
14 12 13 anbi12d Could not format ( X e. V -> ( ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) <-> ( f : ( X ^m { 0 } ) --> X /\ g : ( X ^m { 0 } ) --> X ) ) ) : No typesetting found for |- ( X e. V -> ( ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) <-> ( f : ( X ^m { 0 } ) --> X /\ g : ( X ^m { 0 } ) --> X ) ) ) with typecode |-
15 ffn f:X0XfFnX0
16 15 adantr f:X0Xg:X0XfFnX0
17 16 3ad2ant2 XVf:X0Xg:X0XxXf0x=g0xfFnX0
18 ffn g:X0XgFnX0
19 18 adantl f:X0Xg:X0XgFnX0
20 19 3ad2ant2 XVf:X0Xg:X0XxXf0x=g0xgFnX0
21 elmapi yX0y:0X
22 c0ex 0V
23 22 fsn2 y:0Xy0Xy=0y0
24 21 23 sylib yX0y0Xy=0y0
25 opeq2 x=y00x=0y0
26 25 sneqd x=y00x=0y0
27 26 fveq2d x=y0f0x=f0y0
28 26 fveq2d x=y0g0x=g0y0
29 27 28 eqeq12d x=y0f0x=g0xf0y0=g0y0
30 29 rspccv xXf0x=g0xy0Xf0y0=g0y0
31 30 3ad2ant3 XVf:X0Xg:X0XxXf0x=g0xy0Xf0y0=g0y0
32 31 com12 y0XXVf:X0Xg:X0XxXf0x=g0xf0y0=g0y0
33 32 adantr y0Xy=0y0XVf:X0Xg:X0XxXf0x=g0xf0y0=g0y0
34 fveq2 y=0y0fy=f0y0
35 fveq2 y=0y0gy=g0y0
36 34 35 eqeq12d y=0y0fy=gyf0y0=g0y0
37 36 adantl y0Xy=0y0fy=gyf0y0=g0y0
38 33 37 sylibrd y0Xy=0y0XVf:X0Xg:X0XxXf0x=g0xfy=gy
39 24 38 syl yX0XVf:X0Xg:X0XxXf0x=g0xfy=gy
40 39 impcom XVf:X0Xg:X0XxXf0x=g0xyX0fy=gy
41 17 20 40 eqfnfvd XVf:X0Xg:X0XxXf0x=g0xf=g
42 41 3exp XVf:X0Xg:X0XxXf0x=g0xf=g
43 14 42 sylbid Could not format ( X e. V -> ( ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) -> ( A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) -> f = g ) ) ) : No typesetting found for |- ( X e. V -> ( ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) -> ( A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) -> f = g ) ) ) with typecode |-
44 43 imp Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( A. x e. X ( f ` { <. 0 , x >. } ) = ( g ` { <. 0 , x >. } ) -> f = g ) ) with typecode |-
45 11 44 sylbid Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( x e. X |-> ( f ` { <. 0 , x >. } ) ) = ( x e. X |-> ( g ` { <. 0 , x >. } ) ) -> f = g ) ) with typecode |-
46 7 45 sylbid Could not format ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 1 -aryF X ) /\ g e. ( 1 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) -> f = g ) ) with typecode |-
47 46 ralrimivva Could not format ( X e. V -> A. f e. ( 1 -aryF X ) A. g e. ( 1 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) : No typesetting found for |- ( X e. V -> A. f e. ( 1 -aryF X ) A. g e. ( 1 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) with typecode |-
48 dff13 Could not format ( H : ( 1 -aryF X ) -1-1-> ( X ^m X ) <-> ( H : ( 1 -aryF X ) --> ( X ^m X ) /\ A. f e. ( 1 -aryF X ) A. g e. ( 1 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) ) : No typesetting found for |- ( H : ( 1 -aryF X ) -1-1-> ( X ^m X ) <-> ( H : ( 1 -aryF X ) --> ( X ^m X ) /\ A. f e. ( 1 -aryF X ) A. g e. ( 1 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) ) with typecode |-
49 2 47 48 sylanbrc Could not format ( X e. V -> H : ( 1 -aryF X ) -1-1-> ( X ^m X ) ) : No typesetting found for |- ( X e. V -> H : ( 1 -aryF X ) -1-1-> ( X ^m X ) ) with typecode |-