Metamath Proof Explorer


Theorem 2at0mat0

Description: Special case of 2atmat0 where one atom could be zero. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses 2atmatz.j ˙=joinK
2atmatz.m ˙=meetK
2atmatz.z 0˙=0.K
2atmatz.a A=AtomsK
Assertion 2at0mat0 KHLPAQARASAS=0˙P˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙

Proof

Step Hyp Ref Expression
1 2atmatz.j ˙=joinK
2 2atmatz.m ˙=meetK
3 2atmatz.z 0˙=0.K
4 2atmatz.a A=AtomsK
5 simpll KHLPAQARASAS=0˙P˙QR˙SSAKHLPAQA
6 simplr1 KHLPAQARASAS=0˙P˙QR˙SSARA
7 simpr KHLPAQARASAS=0˙P˙QR˙SSASA
8 simplr3 KHLPAQARASAS=0˙P˙QR˙SSAP˙QR˙S
9 simpl1 KHLPAQARASAP˙QR˙SKHL
10 hlol KHLKOL
11 9 10 syl KHLPAQARASAP˙QR˙SKOL
12 simpr1 KHLPAQARASAP˙QR˙SRA
13 simpr2 KHLPAQARASAP˙QR˙SSA
14 eqid BaseK=BaseK
15 14 1 4 hlatjcl KHLRASAR˙SBaseK
16 9 12 13 15 syl3anc KHLPAQARASAP˙QR˙SR˙SBaseK
17 simpl3 KHLPAQARASAP˙QR˙SQA
18 14 2 3 4 meetat2 KOLR˙SBaseKQAR˙S˙QAR˙S˙Q=0˙
19 11 16 17 18 syl3anc KHLPAQARASAP˙QR˙SR˙S˙QAR˙S˙Q=0˙
20 19 adantr KHLPAQARASAP˙QR˙SP=QR˙S˙QAR˙S˙Q=0˙
21 oveq1 P=QP˙Q=Q˙Q
22 1 4 hlatjidm KHLQAQ˙Q=Q
23 9 17 22 syl2anc KHLPAQARASAP˙QR˙SQ˙Q=Q
24 21 23 sylan9eqr KHLPAQARASAP˙QR˙SP=QP˙Q=Q
25 24 oveq1d KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙S=Q˙R˙S
26 9 hllatd KHLPAQARASAP˙QR˙SKLat
27 14 4 atbase QAQBaseK
28 17 27 syl KHLPAQARASAP˙QR˙SQBaseK
29 14 2 latmcom KLatQBaseKR˙SBaseKQ˙R˙S=R˙S˙Q
30 26 28 16 29 syl3anc KHLPAQARASAP˙QR˙SQ˙R˙S=R˙S˙Q
31 30 adantr KHLPAQARASAP˙QR˙SP=QQ˙R˙S=R˙S˙Q
32 25 31 eqtrd KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙S=R˙S˙Q
33 32 eleq1d KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙SAR˙S˙QA
34 32 eqeq1d KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙S=0˙R˙S˙Q=0˙
35 33 34 orbi12d KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙SAP˙Q˙R˙S=0˙R˙S˙QAR˙S˙Q=0˙
36 20 35 mpbird KHLPAQARASAP˙QR˙SP=QP˙Q˙R˙SAP˙Q˙R˙S=0˙
37 14 1 4 hlatjcl KHLPAQAP˙QBaseK
38 37 adantr KHLPAQARASAP˙QR˙SP˙QBaseK
39 14 2 3 4 meetat2 KOLP˙QBaseKSAP˙Q˙SAP˙Q˙S=0˙
40 11 38 13 39 syl3anc KHLPAQARASAP˙QR˙SP˙Q˙SAP˙Q˙S=0˙
41 40 adantr KHLPAQARASAP˙QR˙SR=SP˙Q˙SAP˙Q˙S=0˙
42 oveq1 R=SR˙S=S˙S
43 1 4 hlatjidm KHLSAS˙S=S
44 9 13 43 syl2anc KHLPAQARASAP˙QR˙SS˙S=S
45 42 44 sylan9eqr KHLPAQARASAP˙QR˙SR=SR˙S=S
46 45 oveq2d KHLPAQARASAP˙QR˙SR=SP˙Q˙R˙S=P˙Q˙S
47 46 eleq1d KHLPAQARASAP˙QR˙SR=SP˙Q˙R˙SAP˙Q˙SA
48 46 eqeq1d KHLPAQARASAP˙QR˙SR=SP˙Q˙R˙S=0˙P˙Q˙S=0˙
49 47 48 orbi12d KHLPAQARASAP˙QR˙SR=SP˙Q˙R˙SAP˙Q˙R˙S=0˙P˙Q˙SAP˙Q˙S=0˙
50 41 49 mpbird KHLPAQARASAP˙QR˙SR=SP˙Q˙R˙SAP˙Q˙R˙S=0˙
51 50 adantlr KHLPAQARASAP˙QR˙SPQR=SP˙Q˙R˙SAP˙Q˙R˙S=0˙
52 df-ne P˙Q˙R˙S0˙¬P˙Q˙R˙S=0˙
53 simpll1 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙KHL
54 simpll2 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙PA
55 simpll3 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙QA
56 simpr1 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙PQ
57 eqid LLinesK=LLinesK
58 1 4 57 llni2 KHLPAQAPQP˙QLLinesK
59 53 54 55 56 58 syl31anc KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙QLLinesK
60 simplr1 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙RA
61 simplr2 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙SA
62 simpr2 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙RS
63 1 4 57 llni2 KHLRASARSR˙SLLinesK
64 53 60 61 62 63 syl31anc KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙R˙SLLinesK
65 simplr3 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙QR˙S
66 simpr3 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙Q˙R˙S0˙
67 2 3 4 57 2llnmat KHLP˙QLLinesKR˙SLLinesKP˙QR˙SP˙Q˙R˙S0˙P˙Q˙R˙SA
68 53 59 64 65 66 67 syl32anc KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙Q˙R˙SA
69 68 3exp2 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙Q˙R˙SA
70 69 imp31 KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S0˙P˙Q˙R˙SA
71 52 70 biimtrrid KHLPAQARASAP˙QR˙SPQRS¬P˙Q˙R˙S=0˙P˙Q˙R˙SA
72 71 orrd KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙S=0˙P˙Q˙R˙SA
73 72 orcomd KHLPAQARASAP˙QR˙SPQRSP˙Q˙R˙SAP˙Q˙R˙S=0˙
74 51 73 pm2.61dane KHLPAQARASAP˙QR˙SPQP˙Q˙R˙SAP˙Q˙R˙S=0˙
75 36 74 pm2.61dane KHLPAQARASAP˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙
76 5 6 7 8 75 syl13anc KHLPAQARASAS=0˙P˙QR˙SSAP˙Q˙R˙SAP˙Q˙R˙S=0˙
77 simpl1 KHLPAQARASAS=0˙P˙QR˙SKHL
78 77 10 syl KHLPAQARASAS=0˙P˙QR˙SKOL
79 37 adantr KHLPAQARASAS=0˙P˙QR˙SP˙QBaseK
80 simpr1 KHLPAQARASAS=0˙P˙QR˙SRA
81 14 2 3 4 meetat2 KOLP˙QBaseKRAP˙Q˙RAP˙Q˙R=0˙
82 78 79 80 81 syl3anc KHLPAQARASAS=0˙P˙QR˙SP˙Q˙RAP˙Q˙R=0˙
83 82 adantr KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙RAP˙Q˙R=0˙
84 oveq2 S=0˙R˙S=R˙0˙
85 14 4 atbase RARBaseK
86 80 85 syl KHLPAQARASAS=0˙P˙QR˙SRBaseK
87 14 1 3 olj01 KOLRBaseKR˙0˙=R
88 78 86 87 syl2anc KHLPAQARASAS=0˙P˙QR˙SR˙0˙=R
89 84 88 sylan9eqr KHLPAQARASAS=0˙P˙QR˙SS=0˙R˙S=R
90 89 oveq2d KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙R˙S=P˙Q˙R
91 90 eleq1d KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙R˙SAP˙Q˙RA
92 90 eqeq1d KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙R˙S=0˙P˙Q˙R=0˙
93 91 92 orbi12d KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙R˙SAP˙Q˙R˙S=0˙P˙Q˙RAP˙Q˙R=0˙
94 83 93 mpbird KHLPAQARASAS=0˙P˙QR˙SS=0˙P˙Q˙R˙SAP˙Q˙R˙S=0˙
95 simpr2 KHLPAQARASAS=0˙P˙QR˙SSAS=0˙
96 76 94 95 mpjaodan KHLPAQARASAS=0˙P˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙