Metamath Proof Explorer


Theorem 2lgslem3b

Description: Lemma for 2lgslem3b1 . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N = P 1 2 P 4
Assertion 2lgslem3b K 0 P = 8 K + 3 N = 2 K + 1

Proof

Step Hyp Ref Expression
1 2lgslem2.n N = P 1 2 P 4
2 oveq1 P = 8 K + 3 P 1 = 8 K + 3 - 1
3 2 oveq1d P = 8 K + 3 P 1 2 = 8 K + 3 - 1 2
4 fvoveq1 P = 8 K + 3 P 4 = 8 K + 3 4
5 3 4 oveq12d P = 8 K + 3 P 1 2 P 4 = 8 K + 3 - 1 2 8 K + 3 4
6 1 5 eqtrid P = 8 K + 3 N = 8 K + 3 - 1 2 8 K + 3 4
7 8nn0 8 0
8 7 a1i K 0 8 0
9 id K 0 K 0
10 8 9 nn0mulcld K 0 8 K 0
11 10 nn0cnd K 0 8 K
12 3cn 3
13 12 a1i K 0 3
14 1cnd K 0 1
15 11 13 14 addsubassd K 0 8 K + 3 - 1 = 8 K + 3 - 1
16 4t2e8 4 2 = 8
17 16 eqcomi 8 = 4 2
18 17 a1i K 0 8 = 4 2
19 18 oveq1d K 0 8 K = 4 2 K
20 4cn 4
21 20 a1i K 0 4
22 2cn 2
23 22 a1i K 0 2
24 nn0cn K 0 K
25 21 23 24 mul32d K 0 4 2 K = 4 K 2
26 19 25 eqtrd K 0 8 K = 4 K 2
27 3m1e2 3 1 = 2
28 27 a1i K 0 3 1 = 2
29 26 28 oveq12d K 0 8 K + 3 - 1 = 4 K 2 + 2
30 15 29 eqtrd K 0 8 K + 3 - 1 = 4 K 2 + 2
31 30 oveq1d K 0 8 K + 3 - 1 2 = 4 K 2 + 2 2
32 4nn0 4 0
33 32 a1i K 0 4 0
34 33 9 nn0mulcld K 0 4 K 0
35 34 nn0cnd K 0 4 K
36 35 23 mulcld K 0 4 K 2
37 2rp 2 +
38 37 a1i K 0 2 +
39 38 rpcnne0d K 0 2 2 0
40 divdir 4 K 2 2 2 2 0 4 K 2 + 2 2 = 4 K 2 2 + 2 2
41 36 23 39 40 syl3anc K 0 4 K 2 + 2 2 = 4 K 2 2 + 2 2
42 2ne0 2 0
43 42 a1i K 0 2 0
44 35 23 43 divcan4d K 0 4 K 2 2 = 4 K
45 2div2e1 2 2 = 1
46 45 a1i K 0 2 2 = 1
47 44 46 oveq12d K 0 4 K 2 2 + 2 2 = 4 K + 1
48 31 41 47 3eqtrd K 0 8 K + 3 - 1 2 = 4 K + 1
49 4ne0 4 0
50 20 49 pm3.2i 4 4 0
51 50 a1i K 0 4 4 0
52 divdir 8 K 3 4 4 0 8 K + 3 4 = 8 K 4 + 3 4
53 11 13 51 52 syl3anc K 0 8 K + 3 4 = 8 K 4 + 3 4
54 8cn 8
55 54 a1i K 0 8
56 div23 8 K 4 4 0 8 K 4 = 8 4 K
57 55 24 51 56 syl3anc K 0 8 K 4 = 8 4 K
58 17 oveq1i 8 4 = 4 2 4
59 22 20 49 divcan3i 4 2 4 = 2
60 58 59 eqtri 8 4 = 2
61 60 a1i K 0 8 4 = 2
62 61 oveq1d K 0 8 4 K = 2 K
63 57 62 eqtrd K 0 8 K 4 = 2 K
64 63 oveq1d K 0 8 K 4 + 3 4 = 2 K + 3 4
65 53 64 eqtrd K 0 8 K + 3 4 = 2 K + 3 4
66 65 fveq2d K 0 8 K + 3 4 = 2 K + 3 4
67 3lt4 3 < 4
68 2nn0 2 0
69 68 a1i K 0 2 0
70 69 9 nn0mulcld K 0 2 K 0
71 70 nn0zd K 0 2 K
72 3nn0 3 0
73 72 a1i K 0 3 0
74 4nn 4
75 74 a1i K 0 4
76 adddivflid 2 K 3 0 4 3 < 4 2 K + 3 4 = 2 K
77 71 73 75 76 syl3anc K 0 3 < 4 2 K + 3 4 = 2 K
78 67 77 mpbii K 0 2 K + 3 4 = 2 K
79 66 78 eqtrd K 0 8 K + 3 4 = 2 K
80 48 79 oveq12d K 0 8 K + 3 - 1 2 8 K + 3 4 = 4 K + 1 - 2 K
81 70 nn0cnd K 0 2 K
82 35 14 81 addsubd K 0 4 K + 1 - 2 K = 4 K - 2 K + 1
83 2t2e4 2 2 = 4
84 83 eqcomi 4 = 2 2
85 84 a1i K 0 4 = 2 2
86 85 oveq1d K 0 4 K = 2 2 K
87 23 23 24 mulassd K 0 2 2 K = 2 2 K
88 86 87 eqtrd K 0 4 K = 2 2 K
89 88 oveq1d K 0 4 K 2 K = 2 2 K 2 K
90 2txmxeqx 2 K 2 2 K 2 K = 2 K
91 81 90 syl K 0 2 2 K 2 K = 2 K
92 89 91 eqtrd K 0 4 K 2 K = 2 K
93 92 oveq1d K 0 4 K - 2 K + 1 = 2 K + 1
94 80 82 93 3eqtrd K 0 8 K + 3 - 1 2 8 K + 3 4 = 2 K + 1
95 6 94 sylan9eqr K 0 P = 8 K + 3 N = 2 K + 1