Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
|
2 |
|
oveq1 |
|
3 |
2
|
oveq1d |
|
4 |
|
fvoveq1 |
|
5 |
3 4
|
oveq12d |
|
6 |
1 5
|
eqtrid |
|
7 |
|
8nn0 |
|
8 |
7
|
a1i |
|
9 |
|
id |
|
10 |
8 9
|
nn0mulcld |
|
11 |
10
|
nn0cnd |
|
12 |
|
3cn |
|
13 |
12
|
a1i |
|
14 |
|
1cnd |
|
15 |
11 13 14
|
addsubassd |
|
16 |
|
4t2e8 |
|
17 |
16
|
eqcomi |
|
18 |
17
|
a1i |
|
19 |
18
|
oveq1d |
|
20 |
|
4cn |
|
21 |
20
|
a1i |
|
22 |
|
2cn |
|
23 |
22
|
a1i |
|
24 |
|
nn0cn |
|
25 |
21 23 24
|
mul32d |
|
26 |
19 25
|
eqtrd |
|
27 |
|
3m1e2 |
|
28 |
27
|
a1i |
|
29 |
26 28
|
oveq12d |
|
30 |
15 29
|
eqtrd |
|
31 |
30
|
oveq1d |
|
32 |
|
4nn0 |
|
33 |
32
|
a1i |
|
34 |
33 9
|
nn0mulcld |
|
35 |
34
|
nn0cnd |
|
36 |
35 23
|
mulcld |
|
37 |
|
2rp |
|
38 |
37
|
a1i |
|
39 |
38
|
rpcnne0d |
|
40 |
|
divdir |
|
41 |
36 23 39 40
|
syl3anc |
|
42 |
|
2ne0 |
|
43 |
42
|
a1i |
|
44 |
35 23 43
|
divcan4d |
|
45 |
|
2div2e1 |
|
46 |
45
|
a1i |
|
47 |
44 46
|
oveq12d |
|
48 |
31 41 47
|
3eqtrd |
|
49 |
|
4ne0 |
|
50 |
20 49
|
pm3.2i |
|
51 |
50
|
a1i |
|
52 |
|
divdir |
|
53 |
11 13 51 52
|
syl3anc |
|
54 |
|
8cn |
|
55 |
54
|
a1i |
|
56 |
|
div23 |
|
57 |
55 24 51 56
|
syl3anc |
|
58 |
17
|
oveq1i |
|
59 |
22 20 49
|
divcan3i |
|
60 |
58 59
|
eqtri |
|
61 |
60
|
a1i |
|
62 |
61
|
oveq1d |
|
63 |
57 62
|
eqtrd |
|
64 |
63
|
oveq1d |
|
65 |
53 64
|
eqtrd |
|
66 |
65
|
fveq2d |
|
67 |
|
3lt4 |
|
68 |
|
2nn0 |
|
69 |
68
|
a1i |
|
70 |
69 9
|
nn0mulcld |
|
71 |
70
|
nn0zd |
|
72 |
|
3nn0 |
|
73 |
72
|
a1i |
|
74 |
|
4nn |
|
75 |
74
|
a1i |
|
76 |
|
adddivflid |
|
77 |
71 73 75 76
|
syl3anc |
|
78 |
67 77
|
mpbii |
|
79 |
66 78
|
eqtrd |
|
80 |
48 79
|
oveq12d |
|
81 |
70
|
nn0cnd |
|
82 |
35 14 81
|
addsubd |
|
83 |
|
2t2e4 |
|
84 |
83
|
eqcomi |
|
85 |
84
|
a1i |
|
86 |
85
|
oveq1d |
|
87 |
23 23 24
|
mulassd |
|
88 |
86 87
|
eqtrd |
|
89 |
88
|
oveq1d |
|
90 |
|
2txmxeqx |
|
91 |
81 90
|
syl |
|
92 |
89 91
|
eqtrd |
|
93 |
92
|
oveq1d |
|
94 |
80 82 93
|
3eqtrd |
|
95 |
6 94
|
sylan9eqr |
|