Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgslem3b
Next ⟩
2lgslem3c
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgslem3b
Description:
Lemma for
2lgslem3b1
.
(Contributed by
AV
, 16-Jul-2021)
Ref
Expression
Hypothesis
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
Assertion
2lgslem3b
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
3
→
N
=
2
K
+
1
Proof
Step
Hyp
Ref
Expression
1
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
2
oveq1
⊢
P
=
8
K
+
3
→
P
−
1
=
8
K
+
3
-
1
3
2
oveq1d
⊢
P
=
8
K
+
3
→
P
−
1
2
=
8
K
+
3
-
1
2
4
fvoveq1
⊢
P
=
8
K
+
3
→
P
4
=
8
K
+
3
4
5
3
4
oveq12d
⊢
P
=
8
K
+
3
→
P
−
1
2
−
P
4
=
8
K
+
3
-
1
2
−
8
K
+
3
4
6
1
5
eqtrid
⊢
P
=
8
K
+
3
→
N
=
8
K
+
3
-
1
2
−
8
K
+
3
4
7
8nn0
⊢
8
∈
ℕ
0
8
7
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℕ
0
9
id
⊢
K
∈
ℕ
0
→
K
∈
ℕ
0
10
8
9
nn0mulcld
⊢
K
∈
ℕ
0
→
8
K
∈
ℕ
0
11
10
nn0cnd
⊢
K
∈
ℕ
0
→
8
K
∈
ℂ
12
3cn
⊢
3
∈
ℂ
13
12
a1i
⊢
K
∈
ℕ
0
→
3
∈
ℂ
14
1cnd
⊢
K
∈
ℕ
0
→
1
∈
ℂ
15
11
13
14
addsubassd
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
=
8
K
+
3
-
1
16
4t2e8
⊢
4
⋅
2
=
8
17
16
eqcomi
⊢
8
=
4
⋅
2
18
17
a1i
⊢
K
∈
ℕ
0
→
8
=
4
⋅
2
19
18
oveq1d
⊢
K
∈
ℕ
0
→
8
K
=
4
⋅
2
K
20
4cn
⊢
4
∈
ℂ
21
20
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
22
2cn
⊢
2
∈
ℂ
23
22
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℂ
24
nn0cn
⊢
K
∈
ℕ
0
→
K
∈
ℂ
25
21
23
24
mul32d
⊢
K
∈
ℕ
0
→
4
⋅
2
K
=
4
K
⋅
2
26
19
25
eqtrd
⊢
K
∈
ℕ
0
→
8
K
=
4
K
⋅
2
27
3m1e2
⊢
3
−
1
=
2
28
27
a1i
⊢
K
∈
ℕ
0
→
3
−
1
=
2
29
26
28
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
=
4
K
⋅
2
+
2
30
15
29
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
=
4
K
⋅
2
+
2
31
30
oveq1d
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
2
=
4
K
⋅
2
+
2
2
32
4nn0
⊢
4
∈
ℕ
0
33
32
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
0
34
33
9
nn0mulcld
⊢
K
∈
ℕ
0
→
4
K
∈
ℕ
0
35
34
nn0cnd
⊢
K
∈
ℕ
0
→
4
K
∈
ℂ
36
35
23
mulcld
⊢
K
∈
ℕ
0
→
4
K
⋅
2
∈
ℂ
37
2rp
⊢
2
∈
ℝ
+
38
37
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℝ
+
39
38
rpcnne0d
⊢
K
∈
ℕ
0
→
2
∈
ℂ
∧
2
≠
0
40
divdir
⊢
4
K
⋅
2
∈
ℂ
∧
2
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
4
K
⋅
2
+
2
2
=
4
K
⋅
2
2
+
2
2
41
36
23
39
40
syl3anc
⊢
K
∈
ℕ
0
→
4
K
⋅
2
+
2
2
=
4
K
⋅
2
2
+
2
2
42
2ne0
⊢
2
≠
0
43
42
a1i
⊢
K
∈
ℕ
0
→
2
≠
0
44
35
23
43
divcan4d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
=
4
K
45
2div2e1
⊢
2
2
=
1
46
45
a1i
⊢
K
∈
ℕ
0
→
2
2
=
1
47
44
46
oveq12d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
+
2
2
=
4
K
+
1
48
31
41
47
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
2
=
4
K
+
1
49
4ne0
⊢
4
≠
0
50
20
49
pm3.2i
⊢
4
∈
ℂ
∧
4
≠
0
51
50
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
∧
4
≠
0
52
divdir
⊢
8
K
∈
ℂ
∧
3
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
+
3
4
=
8
K
4
+
3
4
53
11
13
51
52
syl3anc
⊢
K
∈
ℕ
0
→
8
K
+
3
4
=
8
K
4
+
3
4
54
8cn
⊢
8
∈
ℂ
55
54
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℂ
56
div23
⊢
8
∈
ℂ
∧
K
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
4
=
8
4
K
57
55
24
51
56
syl3anc
⊢
K
∈
ℕ
0
→
8
K
4
=
8
4
K
58
17
oveq1i
⊢
8
4
=
4
⋅
2
4
59
22
20
49
divcan3i
⊢
4
⋅
2
4
=
2
60
58
59
eqtri
⊢
8
4
=
2
61
60
a1i
⊢
K
∈
ℕ
0
→
8
4
=
2
62
61
oveq1d
⊢
K
∈
ℕ
0
→
8
4
K
=
2
K
63
57
62
eqtrd
⊢
K
∈
ℕ
0
→
8
K
4
=
2
K
64
63
oveq1d
⊢
K
∈
ℕ
0
→
8
K
4
+
3
4
=
2
K
+
3
4
65
53
64
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
3
4
=
2
K
+
3
4
66
65
fveq2d
⊢
K
∈
ℕ
0
→
8
K
+
3
4
=
2
K
+
3
4
67
3lt4
⊢
3
<
4
68
2nn0
⊢
2
∈
ℕ
0
69
68
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℕ
0
70
69
9
nn0mulcld
⊢
K
∈
ℕ
0
→
2
K
∈
ℕ
0
71
70
nn0zd
⊢
K
∈
ℕ
0
→
2
K
∈
ℤ
72
3nn0
⊢
3
∈
ℕ
0
73
72
a1i
⊢
K
∈
ℕ
0
→
3
∈
ℕ
0
74
4nn
⊢
4
∈
ℕ
75
74
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
76
adddivflid
⊢
2
K
∈
ℤ
∧
3
∈
ℕ
0
∧
4
∈
ℕ
→
3
<
4
↔
2
K
+
3
4
=
2
K
77
71
73
75
76
syl3anc
⊢
K
∈
ℕ
0
→
3
<
4
↔
2
K
+
3
4
=
2
K
78
67
77
mpbii
⊢
K
∈
ℕ
0
→
2
K
+
3
4
=
2
K
79
66
78
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
3
4
=
2
K
80
48
79
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
2
−
8
K
+
3
4
=
4
K
+
1
-
2
K
81
70
nn0cnd
⊢
K
∈
ℕ
0
→
2
K
∈
ℂ
82
35
14
81
addsubd
⊢
K
∈
ℕ
0
→
4
K
+
1
-
2
K
=
4
K
-
2
K
+
1
83
2t2e4
⊢
2
⋅
2
=
4
84
83
eqcomi
⊢
4
=
2
⋅
2
85
84
a1i
⊢
K
∈
ℕ
0
→
4
=
2
⋅
2
86
85
oveq1d
⊢
K
∈
ℕ
0
→
4
K
=
2
⋅
2
K
87
23
23
24
mulassd
⊢
K
∈
ℕ
0
→
2
⋅
2
K
=
2
2
K
88
86
87
eqtrd
⊢
K
∈
ℕ
0
→
4
K
=
2
2
K
89
88
oveq1d
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
2
K
−
2
K
90
2txmxeqx
⊢
2
K
∈
ℂ
→
2
2
K
−
2
K
=
2
K
91
81
90
syl
⊢
K
∈
ℕ
0
→
2
2
K
−
2
K
=
2
K
92
89
91
eqtrd
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
K
93
92
oveq1d
⊢
K
∈
ℕ
0
→
4
K
-
2
K
+
1
=
2
K
+
1
94
80
82
93
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
3
-
1
2
−
8
K
+
3
4
=
2
K
+
1
95
6
94
sylan9eqr
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
3
→
N
=
2
K
+
1