Metamath Proof Explorer


Theorem 2lgslem3b

Description: Lemma for 2lgslem3b1 . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3b K0P=8K+3N=2K+1

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 oveq1 P=8K+3P1=8K+3-1
3 2 oveq1d P=8K+3P12=8K+3-12
4 fvoveq1 P=8K+3P4=8K+34
5 3 4 oveq12d P=8K+3P12P4=8K+3-128K+34
6 1 5 eqtrid P=8K+3N=8K+3-128K+34
7 8nn0 80
8 7 a1i K080
9 id K0K0
10 8 9 nn0mulcld K08K0
11 10 nn0cnd K08K
12 3cn 3
13 12 a1i K03
14 1cnd K01
15 11 13 14 addsubassd K08K+3-1=8K+3-1
16 4t2e8 42=8
17 16 eqcomi 8=42
18 17 a1i K08=42
19 18 oveq1d K08K=42K
20 4cn 4
21 20 a1i K04
22 2cn 2
23 22 a1i K02
24 nn0cn K0K
25 21 23 24 mul32d K042K=4K2
26 19 25 eqtrd K08K=4K2
27 3m1e2 31=2
28 27 a1i K031=2
29 26 28 oveq12d K08K+3-1=4K2+2
30 15 29 eqtrd K08K+3-1=4K2+2
31 30 oveq1d K08K+3-12=4K2+22
32 4nn0 40
33 32 a1i K040
34 33 9 nn0mulcld K04K0
35 34 nn0cnd K04K
36 35 23 mulcld K04K2
37 2rp 2+
38 37 a1i K02+
39 38 rpcnne0d K0220
40 divdir 4K222204K2+22=4K22+22
41 36 23 39 40 syl3anc K04K2+22=4K22+22
42 2ne0 20
43 42 a1i K020
44 35 23 43 divcan4d K04K22=4K
45 2div2e1 22=1
46 45 a1i K022=1
47 44 46 oveq12d K04K22+22=4K+1
48 31 41 47 3eqtrd K08K+3-12=4K+1
49 4ne0 40
50 20 49 pm3.2i 440
51 50 a1i K0440
52 divdir 8K34408K+34=8K4+34
53 11 13 51 52 syl3anc K08K+34=8K4+34
54 8cn 8
55 54 a1i K08
56 div23 8K4408K4=84K
57 55 24 51 56 syl3anc K08K4=84K
58 17 oveq1i 84=424
59 22 20 49 divcan3i 424=2
60 58 59 eqtri 84=2
61 60 a1i K084=2
62 61 oveq1d K084K=2K
63 57 62 eqtrd K08K4=2K
64 63 oveq1d K08K4+34=2K+34
65 53 64 eqtrd K08K+34=2K+34
66 65 fveq2d K08K+34=2K+34
67 3lt4 3<4
68 2nn0 20
69 68 a1i K020
70 69 9 nn0mulcld K02K0
71 70 nn0zd K02K
72 3nn0 30
73 72 a1i K030
74 4nn 4
75 74 a1i K04
76 adddivflid 2K3043<42K+34=2K
77 71 73 75 76 syl3anc K03<42K+34=2K
78 67 77 mpbii K02K+34=2K
79 66 78 eqtrd K08K+34=2K
80 48 79 oveq12d K08K+3-128K+34=4K+1-2K
81 70 nn0cnd K02K
82 35 14 81 addsubd K04K+1-2K=4K-2K+1
83 2t2e4 22=4
84 83 eqcomi 4=22
85 84 a1i K04=22
86 85 oveq1d K04K=22K
87 23 23 24 mulassd K022K=22K
88 86 87 eqtrd K04K=22K
89 88 oveq1d K04K2K=22K2K
90 2txmxeqx 2K22K2K=2K
91 81 90 syl K022K2K=2K
92 89 91 eqtrd K04K2K=2K
93 92 oveq1d K04K-2K+1=2K+1
94 80 82 93 3eqtrd K08K+3-128K+34=2K+1
95 6 94 sylan9eqr K0P=8K+3N=2K+1