Metamath Proof Explorer


Theorem 2reu8i

Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, see also 2reu8 . The involved wffs depend on the setvar variables as follows: ph(x,y), ta(v,y), ch(x,w), th(v,w), et(x,b), ps(a,b), ze(a,w). (Contributed by AV, 1-Apr-2023)

Ref Expression
Hypotheses 2reu8i.x x=vφτ
2reu8i.v x=vχθ
2reu8i.w y=wφχ
2reu8i.b y=bφη
2reu8i.a x=aχζ
2reu8i.1 χy=wζy=w
2reu8i.2 x=ay=bφψ
Assertion 2reu8i ∃!xA∃!yBφxAyBφaAbBηb=yψa=x

Proof

Step Hyp Ref Expression
1 2reu8i.x x=vφτ
2 2reu8i.v x=vχθ
3 2reu8i.w y=wφχ
4 2reu8i.b y=bφη
5 2reu8i.a x=aχζ
6 2reu8i.1 χy=wζy=w
7 2reu8i.2 x=ay=bφψ
8 3 reu8 ∃!yBφyBφwBχy=w
9 8 reubii ∃!xA∃!yBφ∃!xAyBφwBχy=w
10 2 imbi1d x=vχy=wθy=w
11 10 ralbidv x=vwBχy=wwBθy=w
12 1 11 anbi12d x=vφwBχy=wτwBθy=w
13 12 rexbidv x=vyBφwBχy=wyBτwBθy=w
14 13 reu8 ∃!xAyBφwBχy=wxAyBφwBχy=wvAyBτwBθy=wx=v
15 9 14 bitri ∃!xA∃!yBφxAyBφwBχy=wvAyBτwBθy=wx=v
16 nfv uτwBθy=w
17 nfs1v yuyτ
18 nfcv _yB
19 nfs1v yuyθ
20 nfv yu=w
21 19 20 nfim yuyθu=w
22 18 21 nfralw ywBuyθu=w
23 17 22 nfan yuyτwBuyθu=w
24 sbequ12 y=uτuyτ
25 sbequ12 y=uθuyθ
26 equequ1 y=uy=wu=w
27 25 26 imbi12d y=uθy=wuyθu=w
28 27 ralbidv y=uwBθy=wwBuyθu=w
29 24 28 anbi12d y=uτwBθy=wuyτwBuyθu=w
30 16 23 29 cbvrexw yBτwBθy=wuBuyτwBuyθu=w
31 30 imbi1i yBτwBθy=wx=vuBuyτwBuyθu=wx=v
32 31 ralbii vAyBτwBθy=wx=vvAuBuyτwBuyθu=wx=v
33 32 anbi2i yBφwBχy=wvAyBτwBθy=wx=vyBφwBχy=wvAuBuyτwBuyθu=wx=v
34 nfcv _yA
35 18 23 nfrexw yuBuyτwBuyθu=w
36 nfv yx=v
37 35 36 nfim yuBuyτwBuyθu=wx=v
38 34 37 nfralw yvAuBuyτwBuyθu=wx=v
39 38 r19.41 yBφwBχy=wvAuBuyτwBuyθu=wx=vyBφwBχy=wvAuBuyτwBuyθu=wx=v
40 33 39 bitr4i yBφwBχy=wvAyBτwBθy=wx=vyBφwBχy=wvAuBuyτwBuyθu=wx=v
41 r19.28v wBχy=wvAuBuyτwBuyθu=wx=vvAwBχy=wuBuyτwBuyθu=wx=v
42 simplr xAyBφvAwBχy=wuBuyτwBuyθu=wx=vφ
43 nfv vwBχy=w
44 nfcv _vB
45 nfs1v vavuyτ
46 nfs1v vavuyθ
47 nfv vu=w
48 46 47 nfim vavuyθu=w
49 44 48 nfralw vwBavuyθu=w
50 45 49 nfan vavuyτwBavuyθu=w
51 44 50 nfrexw vuBavuyτwBavuyθu=w
52 nfv vx=a
53 51 52 nfim vuBavuyτwBavuyθu=wx=a
54 43 53 nfan vwBχy=wuBavuyτwBavuyθu=wx=a
55 sbequ12 v=auyτavuyτ
56 sbequ12 v=auyθavuyθ
57 56 imbi1d v=auyθu=wavuyθu=w
58 57 ralbidv v=awBuyθu=wwBavuyθu=w
59 55 58 anbi12d v=auyτwBuyθu=wavuyτwBavuyθu=w
60 59 rexbidv v=auBuyτwBuyθu=wuBavuyτwBavuyθu=w
61 equequ2 v=ax=vx=a
62 60 61 imbi12d v=auBuyτwBuyθu=wx=vuBavuyτwBavuyθu=wx=a
63 62 anbi2d v=awBχy=wuBuyτwBuyθu=wx=vwBχy=wuBavuyτwBavuyθu=wx=a
64 54 63 rspc aAvAwBχy=wuBuyτwBuyθu=wx=vwBχy=wuBavuyτwBavuyθu=wx=a
65 64 ad2antrl xAyBφaAbBvAwBχy=wuBuyτwBuyθu=wx=vwBχy=wuBavuyτwBavuyθu=wx=a
66 nfs1v wbwχ
67 nfv wy=b
68 66 67 nfim wbwχy=b
69 sbequ12 w=bχbwχ
70 equequ2 w=by=wy=b
71 69 70 imbi12d w=bχy=wbwχy=b
72 68 71 rspc bBwBχy=wbwχy=b
73 72 adantl aAbBwBχy=wbwχy=b
74 73 adantl xAyBφaAbBwBχy=wbwχy=b
75 74 imp xAyBφaAbBwBχy=wbwχy=b
76 3 sbievw wyφχ
77 76 bicomi χwyφ
78 77 sbbii bwχbwwyφ
79 sbco2vv bwwyφbyφ
80 78 79 bitri bwχbyφ
81 80 imbi1i bwχy=bbyφy=b
82 4 sbievw byφη
83 pm3.35 byφbyφy=by=b
84 83 equcomd byφbyφy=bb=y
85 84 ex byφbyφy=bb=y
86 82 85 sylbir ηbyφy=bb=y
87 86 com12 byφy=bηb=y
88 87 ad2antlr xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηb=y
89 simplrr xAyBφaAbBwBχy=wbB
90 89 ad2antrr xAyBφaAbBwBχy=wbyφy=bηψbB
91 sbequ u=buyφbyφ
92 91 sbbidv u=baxuyφaxbyφ
93 equequ1 u=bu=wb=w
94 93 imbi2d u=baxwyφu=waxwyφb=w
95 94 ralbidv u=bwBaxwyφu=wwBaxwyφb=w
96 92 95 anbi12d u=baxuyφwBaxwyφu=waxbyφwBaxwyφb=w
97 96 adantl xAyBφaAbBwBχy=wbyφy=bηψu=baxuyφwBaxwyφu=waxbyφwBaxwyφb=w
98 vex aV
99 vex bV
100 98 99 7 sbc2ie [˙a/x]˙[˙b/y]˙φψ
101 100 a1i xAyBφaAbBwBχy=wbyφy=b[˙a/x]˙[˙b/y]˙φψ
102 101 biimprd xAyBφaAbBwBχy=wbyφy=bψ[˙a/x]˙[˙b/y]˙φ
103 102 adantld xAyBφaAbBwBχy=wbyφy=bηψ[˙a/x]˙[˙b/y]˙φ
104 103 imp xAyBφaAbBwBχy=wbyφy=bηψ[˙a/x]˙[˙b/y]˙φ
105 sbsbc byφ[˙b/y]˙φ
106 105 sbbii axbyφax[˙b/y]˙φ
107 sbsbc ax[˙b/y]˙φ[˙a/x]˙[˙b/y]˙φ
108 106 107 bitri axbyφ[˙a/x]˙[˙b/y]˙φ
109 104 108 sylibr xAyBφaAbBwBχy=wbyφy=bηψaxbyφ
110 76 sbbii axwyφaxχ
111 5 sbievw axχζ
112 110 111 bitri axwyφζ
113 6 ex χy=wζy=w
114 113 adantl xAyBφaAbBηψbyφy=bwBχy=wζy=w
115 82 imbi1i byφy=bηy=b
116 pm2.27 ηηy=by=b
117 116 ad2antrl xAyBφaAbBηψηy=by=b
118 115 117 biimtrid xAyBφaAbBηψbyφy=by=b
119 ax7 y=by=wb=w
120 118 119 syl6 xAyBφaAbBηψbyφy=by=wb=w
121 120 imp xAyBφaAbBηψbyφy=by=wb=w
122 121 ad2antrr xAyBφaAbBηψbyφy=bwBχy=wy=wb=w
123 114 122 syld xAyBφaAbBηψbyφy=bwBχy=wζb=w
124 112 123 biimtrid xAyBφaAbBηψbyφy=bwBχy=waxwyφb=w
125 124 ex xAyBφaAbBηψbyφy=bwBχy=waxwyφb=w
126 125 ralimdva xAyBφaAbBηψbyφy=bwBχy=wwBaxwyφb=w
127 126 exp31 xAyBφaAbBηψbyφy=bwBχy=wwBaxwyφb=w
128 127 com24 xAyBφaAbBwBχy=wbyφy=bηψwBaxwyφb=w
129 128 imp41 xAyBφaAbBwBχy=wbyφy=bηψwBaxwyφb=w
130 109 129 jca xAyBφaAbBwBχy=wbyφy=bηψaxbyφwBaxwyφb=w
131 90 97 130 rspcedvd xAyBφaAbBwBχy=wbyφy=bηψuBaxuyφwBaxwyφu=w
132 1 sbievw vxφτ
133 132 bicomi τvxφ
134 133 sbbii uyτuyvxφ
135 sbcom2 uyvxφvxuyφ
136 134 135 bitri uyτvxuyφ
137 136 sbbii avuyτavvxuyφ
138 sbco2vv avvxuyφaxuyφ
139 137 138 bitri avuyτaxuyφ
140 2 sbievw vxχθ
141 140 bicomi θvxχ
142 141 sbbii uyθuyvxχ
143 sbcom2 uyvxχvxuyχ
144 142 143 bitri uyθvxuyχ
145 144 sbbii avuyθavvxuyχ
146 sbco2vv avvxuyχaxuyχ
147 77 sbbii uyχuywyφ
148 nfs1v ywyφ
149 148 sbf uywyφwyφ
150 147 149 bitri uyχwyφ
151 150 sbbii axuyχaxwyφ
152 145 146 151 3bitri avuyθaxwyφ
153 152 imbi1i avuyθu=waxwyφu=w
154 153 ralbii wBavuyθu=wwBaxwyφu=w
155 139 154 anbi12i avuyτwBavuyθu=waxuyφwBaxwyφu=w
156 155 rexbii uBavuyτwBavuyθu=wuBaxuyφwBaxwyφu=w
157 131 156 sylibr xAyBφaAbBwBχy=wbyφy=bηψuBavuyτwBavuyθu=w
158 pm2.27 uBavuyτwBavuyθu=wuBavuyτwBavuyθu=wx=ax=a
159 157 158 syl xAyBφaAbBwBχy=wbyφy=bηψuBavuyτwBavuyθu=wx=ax=a
160 159 impancom xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηψx=a
161 160 imp xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηψx=a
162 161 equcomd xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηψa=x
163 162 exp32 xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηψa=x
164 88 163 jcad xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηb=yψa=x
165 164 exp31 xAyBφaAbBwBχy=wbyφy=buBavuyτwBavuyθu=wx=aηb=yψa=x
166 81 165 biimtrid xAyBφaAbBwBχy=wbwχy=buBavuyτwBavuyθu=wx=aηb=yψa=x
167 75 166 mpd xAyBφaAbBwBχy=wuBavuyτwBavuyθu=wx=aηb=yψa=x
168 167 expimpd xAyBφaAbBwBχy=wuBavuyτwBavuyθu=wx=aηb=yψa=x
169 65 168 syld xAyBφaAbBvAwBχy=wuBuyτwBuyθu=wx=vηb=yψa=x
170 169 impancom xAyBφvAwBχy=wuBuyτwBuyθu=wx=vaAbBηb=yψa=x
171 170 ralrimivv xAyBφvAwBχy=wuBuyτwBuyθu=wx=vaAbBηb=yψa=x
172 42 171 jca xAyBφvAwBχy=wuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
173 172 ex xAyBφvAwBχy=wuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
174 41 173 syl5 xAyBφwBχy=wvAuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
175 174 expd xAyBφwBχy=wvAuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
176 175 expimpd xAyBφwBχy=wvAuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
177 176 impd xAyBφwBχy=wvAuBuyτwBuyθu=wx=vφaAbBηb=yψa=x
178 177 reximdva xAyBφwBχy=wvAuBuyτwBuyθu=wx=vyBφaAbBηb=yψa=x
179 40 178 biimtrid xAyBφwBχy=wvAyBτwBθy=wx=vyBφaAbBηb=yψa=x
180 179 reximia xAyBφwBχy=wvAyBτwBθy=wx=vxAyBφaAbBηb=yψa=x
181 15 180 sylbi ∃!xA∃!yBφxAyBφaAbBηb=yψa=x