| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2reu8i.x |
|
| 2 |
|
2reu8i.v |
|
| 3 |
|
2reu8i.w |
|
| 4 |
|
2reu8i.b |
|
| 5 |
|
2reu8i.a |
|
| 6 |
|
2reu8i.1 |
|
| 7 |
|
2reu8i.2 |
|
| 8 |
3
|
reu8 |
|
| 9 |
8
|
reubii |
|
| 10 |
2
|
imbi1d |
|
| 11 |
10
|
ralbidv |
|
| 12 |
1 11
|
anbi12d |
|
| 13 |
12
|
rexbidv |
|
| 14 |
13
|
reu8 |
|
| 15 |
9 14
|
bitri |
|
| 16 |
|
nfv |
|
| 17 |
|
nfs1v |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfs1v |
|
| 20 |
|
nfv |
|
| 21 |
19 20
|
nfim |
|
| 22 |
18 21
|
nfralw |
|
| 23 |
17 22
|
nfan |
|
| 24 |
|
sbequ12 |
|
| 25 |
|
sbequ12 |
|
| 26 |
|
equequ1 |
|
| 27 |
25 26
|
imbi12d |
|
| 28 |
27
|
ralbidv |
|
| 29 |
24 28
|
anbi12d |
|
| 30 |
16 23 29
|
cbvrexw |
|
| 31 |
30
|
imbi1i |
|
| 32 |
31
|
ralbii |
|
| 33 |
32
|
anbi2i |
|
| 34 |
|
nfcv |
|
| 35 |
18 23
|
nfrexw |
|
| 36 |
|
nfv |
|
| 37 |
35 36
|
nfim |
|
| 38 |
34 37
|
nfralw |
|
| 39 |
38
|
r19.41 |
|
| 40 |
33 39
|
bitr4i |
|
| 41 |
|
r19.28v |
|
| 42 |
|
simplr |
|
| 43 |
|
nfv |
|
| 44 |
|
nfcv |
|
| 45 |
|
nfs1v |
|
| 46 |
|
nfs1v |
|
| 47 |
|
nfv |
|
| 48 |
46 47
|
nfim |
|
| 49 |
44 48
|
nfralw |
|
| 50 |
45 49
|
nfan |
|
| 51 |
44 50
|
nfrexw |
|
| 52 |
|
nfv |
|
| 53 |
51 52
|
nfim |
|
| 54 |
43 53
|
nfan |
|
| 55 |
|
sbequ12 |
|
| 56 |
|
sbequ12 |
|
| 57 |
56
|
imbi1d |
|
| 58 |
57
|
ralbidv |
|
| 59 |
55 58
|
anbi12d |
|
| 60 |
59
|
rexbidv |
|
| 61 |
|
equequ2 |
|
| 62 |
60 61
|
imbi12d |
|
| 63 |
62
|
anbi2d |
|
| 64 |
54 63
|
rspc |
|
| 65 |
64
|
ad2antrl |
|
| 66 |
|
nfs1v |
|
| 67 |
|
nfv |
|
| 68 |
66 67
|
nfim |
|
| 69 |
|
sbequ12 |
|
| 70 |
|
equequ2 |
|
| 71 |
69 70
|
imbi12d |
|
| 72 |
68 71
|
rspc |
|
| 73 |
72
|
adantl |
|
| 74 |
73
|
adantl |
|
| 75 |
74
|
imp |
|
| 76 |
3
|
sbievw |
|
| 77 |
76
|
bicomi |
|
| 78 |
77
|
sbbii |
|
| 79 |
|
sbco2vv |
|
| 80 |
78 79
|
bitri |
|
| 81 |
80
|
imbi1i |
|
| 82 |
4
|
sbievw |
|
| 83 |
|
pm3.35 |
|
| 84 |
83
|
equcomd |
|
| 85 |
84
|
ex |
|
| 86 |
82 85
|
sylbir |
|
| 87 |
86
|
com12 |
|
| 88 |
87
|
ad2antlr |
|
| 89 |
|
simplrr |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
|
sbequ |
|
| 92 |
91
|
sbbidv |
|
| 93 |
|
equequ1 |
|
| 94 |
93
|
imbi2d |
|
| 95 |
94
|
ralbidv |
|
| 96 |
92 95
|
anbi12d |
|
| 97 |
96
|
adantl |
|
| 98 |
|
vex |
|
| 99 |
|
vex |
|
| 100 |
98 99 7
|
sbc2ie |
|
| 101 |
100
|
a1i |
|
| 102 |
101
|
biimprd |
|
| 103 |
102
|
adantld |
|
| 104 |
103
|
imp |
|
| 105 |
|
sbsbc |
|
| 106 |
105
|
sbbii |
|
| 107 |
|
sbsbc |
|
| 108 |
106 107
|
bitri |
|
| 109 |
104 108
|
sylibr |
|
| 110 |
76
|
sbbii |
|
| 111 |
5
|
sbievw |
|
| 112 |
110 111
|
bitri |
|
| 113 |
6
|
ex |
|
| 114 |
113
|
adantl |
|
| 115 |
82
|
imbi1i |
|
| 116 |
|
pm2.27 |
|
| 117 |
116
|
ad2antrl |
|
| 118 |
115 117
|
biimtrid |
|
| 119 |
|
ax7 |
|
| 120 |
118 119
|
syl6 |
|
| 121 |
120
|
imp |
|
| 122 |
121
|
ad2antrr |
|
| 123 |
114 122
|
syld |
|
| 124 |
112 123
|
biimtrid |
|
| 125 |
124
|
ex |
|
| 126 |
125
|
ralimdva |
|
| 127 |
126
|
exp31 |
|
| 128 |
127
|
com24 |
|
| 129 |
128
|
imp41 |
|
| 130 |
109 129
|
jca |
|
| 131 |
90 97 130
|
rspcedvd |
|
| 132 |
1
|
sbievw |
|
| 133 |
132
|
bicomi |
|
| 134 |
133
|
sbbii |
|
| 135 |
|
sbcom2 |
|
| 136 |
134 135
|
bitri |
|
| 137 |
136
|
sbbii |
|
| 138 |
|
sbco2vv |
|
| 139 |
137 138
|
bitri |
|
| 140 |
2
|
sbievw |
|
| 141 |
140
|
bicomi |
|
| 142 |
141
|
sbbii |
|
| 143 |
|
sbcom2 |
|
| 144 |
142 143
|
bitri |
|
| 145 |
144
|
sbbii |
|
| 146 |
|
sbco2vv |
|
| 147 |
77
|
sbbii |
|
| 148 |
|
nfs1v |
|
| 149 |
148
|
sbf |
|
| 150 |
147 149
|
bitri |
|
| 151 |
150
|
sbbii |
|
| 152 |
145 146 151
|
3bitri |
|
| 153 |
152
|
imbi1i |
|
| 154 |
153
|
ralbii |
|
| 155 |
139 154
|
anbi12i |
|
| 156 |
155
|
rexbii |
|
| 157 |
131 156
|
sylibr |
|
| 158 |
|
pm2.27 |
|
| 159 |
157 158
|
syl |
|
| 160 |
159
|
impancom |
|
| 161 |
160
|
imp |
|
| 162 |
161
|
equcomd |
|
| 163 |
162
|
exp32 |
|
| 164 |
88 163
|
jcad |
|
| 165 |
164
|
exp31 |
|
| 166 |
81 165
|
biimtrid |
|
| 167 |
75 166
|
mpd |
|
| 168 |
167
|
expimpd |
|
| 169 |
65 168
|
syld |
|
| 170 |
169
|
impancom |
|
| 171 |
170
|
ralrimivv |
|
| 172 |
42 171
|
jca |
|
| 173 |
172
|
ex |
|
| 174 |
41 173
|
syl5 |
|
| 175 |
174
|
expd |
|
| 176 |
175
|
expimpd |
|
| 177 |
176
|
impd |
|
| 178 |
177
|
reximdva |
|
| 179 |
40 178
|
biimtrid |
|
| 180 |
179
|
reximia |
|
| 181 |
15 180
|
sylbi |
|