| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem5.1 |
|
| 3 |
|
2sqlem5.2 |
|
| 4 |
|
2sqlem4.3 |
|
| 5 |
|
2sqlem4.4 |
|
| 6 |
|
2sqlem4.5 |
|
| 7 |
|
2sqlem4.6 |
|
| 8 |
|
2sqlem4.7 |
|
| 9 |
|
2sqlem4.8 |
|
| 10 |
2
|
adantr |
|
| 11 |
3
|
adantr |
|
| 12 |
4
|
adantr |
|
| 13 |
5
|
adantr |
|
| 14 |
6
|
adantr |
|
| 15 |
7
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
9
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
1 10 11 12 13 14 15 16 17 18
|
2sqlem3 |
|
| 20 |
2
|
adantr |
|
| 21 |
3
|
adantr |
|
| 22 |
4
|
znegcld |
|
| 23 |
22
|
adantr |
|
| 24 |
5
|
adantr |
|
| 25 |
6
|
adantr |
|
| 26 |
7
|
adantr |
|
| 27 |
4
|
zcnd |
|
| 28 |
|
sqneg |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
oveq1d |
|
| 31 |
8 30
|
eqtr4d |
|
| 32 |
31
|
adantr |
|
| 33 |
9
|
adantr |
|
| 34 |
7
|
zcnd |
|
| 35 |
27 34
|
mulneg1d |
|
| 36 |
35
|
oveq2d |
|
| 37 |
6 5
|
zmulcld |
|
| 38 |
37
|
zcnd |
|
| 39 |
4 7
|
zmulcld |
|
| 40 |
39
|
zcnd |
|
| 41 |
38 40
|
negsubd |
|
| 42 |
36 41
|
eqtrd |
|
| 43 |
42
|
breq2d |
|
| 44 |
43
|
biimpar |
|
| 45 |
1 20 21 23 24 25 26 32 33 44
|
2sqlem3 |
|
| 46 |
|
prmz |
|
| 47 |
3 46
|
syl |
|
| 48 |
|
zsqcl |
|
| 49 |
6 48
|
syl |
|
| 50 |
2
|
nnzd |
|
| 51 |
49 50
|
zmulcld |
|
| 52 |
|
zsqcl |
|
| 53 |
4 52
|
syl |
|
| 54 |
51 53
|
zsubcld |
|
| 55 |
|
dvdsmul1 |
|
| 56 |
47 54 55
|
syl2anc |
|
| 57 |
6 4
|
zmulcld |
|
| 58 |
57
|
zcnd |
|
| 59 |
58
|
sqcld |
|
| 60 |
38
|
sqcld |
|
| 61 |
40
|
sqcld |
|
| 62 |
59 60 61
|
pnpcand |
|
| 63 |
6
|
zcnd |
|
| 64 |
63 27
|
sqmuld |
|
| 65 |
5
|
zcnd |
|
| 66 |
63 65
|
sqmuld |
|
| 67 |
64 66
|
oveq12d |
|
| 68 |
63
|
sqcld |
|
| 69 |
53
|
zcnd |
|
| 70 |
65
|
sqcld |
|
| 71 |
68 69 70
|
adddid |
|
| 72 |
67 71
|
eqtr4d |
|
| 73 |
2
|
nncnd |
|
| 74 |
47
|
zcnd |
|
| 75 |
73 74
|
mulcomd |
|
| 76 |
8 75
|
eqtr3d |
|
| 77 |
76
|
oveq2d |
|
| 78 |
68 74 73
|
mul12d |
|
| 79 |
77 78
|
eqtrd |
|
| 80 |
72 79
|
eqtrd |
|
| 81 |
27 34
|
sqmuld |
|
| 82 |
34
|
sqcld |
|
| 83 |
69 82
|
mulcomd |
|
| 84 |
81 83
|
eqtrd |
|
| 85 |
64 84
|
oveq12d |
|
| 86 |
49
|
zcnd |
|
| 87 |
86 82 69
|
adddird |
|
| 88 |
85 87
|
eqtr4d |
|
| 89 |
9
|
oveq1d |
|
| 90 |
88 89
|
eqtr4d |
|
| 91 |
80 90
|
oveq12d |
|
| 92 |
51
|
zcnd |
|
| 93 |
74 92 69
|
subdid |
|
| 94 |
91 93
|
eqtr4d |
|
| 95 |
62 94
|
eqtr3d |
|
| 96 |
|
subsq |
|
| 97 |
38 40 96
|
syl2anc |
|
| 98 |
95 97
|
eqtr3d |
|
| 99 |
56 98
|
breqtrd |
|
| 100 |
37 39
|
zaddcld |
|
| 101 |
37 39
|
zsubcld |
|
| 102 |
|
euclemma |
|
| 103 |
3 100 101 102
|
syl3anc |
|
| 104 |
99 103
|
mpbid |
|
| 105 |
19 45 104
|
mpjaodan |
|