Metamath Proof Explorer


Theorem 2sqlem4

Description: Lemma for 2sqlem5 . (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses 2sq.1 S=ranwiw2
2sqlem5.1 φN
2sqlem5.2 φP
2sqlem4.3 φA
2sqlem4.4 φB
2sqlem4.5 φC
2sqlem4.6 φD
2sqlem4.7 φNP=A2+B2
2sqlem4.8 φP=C2+D2
Assertion 2sqlem4 φNS

Proof

Step Hyp Ref Expression
1 2sq.1 S=ranwiw2
2 2sqlem5.1 φN
3 2sqlem5.2 φP
4 2sqlem4.3 φA
5 2sqlem4.4 φB
6 2sqlem4.5 φC
7 2sqlem4.6 φD
8 2sqlem4.7 φNP=A2+B2
9 2sqlem4.8 φP=C2+D2
10 2 adantr φPCB+ADN
11 3 adantr φPCB+ADP
12 4 adantr φPCB+ADA
13 5 adantr φPCB+ADB
14 6 adantr φPCB+ADC
15 7 adantr φPCB+ADD
16 8 adantr φPCB+ADNP=A2+B2
17 9 adantr φPCB+ADP=C2+D2
18 simpr φPCB+ADPCB+AD
19 1 10 11 12 13 14 15 16 17 18 2sqlem3 φPCB+ADNS
20 2 adantr φPCBADN
21 3 adantr φPCBADP
22 4 znegcld φA
23 22 adantr φPCBADA
24 5 adantr φPCBADB
25 6 adantr φPCBADC
26 7 adantr φPCBADD
27 4 zcnd φA
28 sqneg AA2=A2
29 27 28 syl φA2=A2
30 29 oveq1d φA2+B2=A2+B2
31 8 30 eqtr4d φNP=A2+B2
32 31 adantr φPCBADNP=A2+B2
33 9 adantr φPCBADP=C2+D2
34 7 zcnd φD
35 27 34 mulneg1d φAD=AD
36 35 oveq2d φCB+AD=CB+AD
37 6 5 zmulcld φCB
38 37 zcnd φCB
39 4 7 zmulcld φAD
40 39 zcnd φAD
41 38 40 negsubd φCB+AD=CBAD
42 36 41 eqtrd φCB+AD=CBAD
43 42 breq2d φPCB+ADPCBAD
44 43 biimpar φPCBADPCB+AD
45 1 20 21 23 24 25 26 32 33 44 2sqlem3 φPCBADNS
46 prmz PP
47 3 46 syl φP
48 zsqcl CC2
49 6 48 syl φC2
50 2 nnzd φN
51 49 50 zmulcld φC2 N
52 zsqcl AA2
53 4 52 syl φA2
54 51 53 zsubcld φC2 NA2
55 dvdsmul1 PC2 NA2PPC2 NA2
56 47 54 55 syl2anc φPPC2 NA2
57 6 4 zmulcld φCA
58 57 zcnd φCA
59 58 sqcld φCA2
60 38 sqcld φCB2
61 40 sqcld φAD2
62 59 60 61 pnpcand φCA2+CB2-CA2+AD2=CB2AD2
63 6 zcnd φC
64 63 27 sqmuld φCA2=C2A2
65 5 zcnd φB
66 63 65 sqmuld φCB2=C2B2
67 64 66 oveq12d φCA2+CB2=C2A2+C2B2
68 63 sqcld φC2
69 53 zcnd φA2
70 65 sqcld φB2
71 68 69 70 adddid φC2A2+B2=C2A2+C2B2
72 67 71 eqtr4d φCA2+CB2=C2A2+B2
73 2 nncnd φN
74 47 zcnd φP
75 73 74 mulcomd φNP=P N
76 8 75 eqtr3d φA2+B2=P N
77 76 oveq2d φC2A2+B2=C2P N
78 68 74 73 mul12d φC2P N=PC2 N
79 77 78 eqtrd φC2A2+B2=PC2 N
80 72 79 eqtrd φCA2+CB2=PC2 N
81 27 34 sqmuld φAD2=A2D2
82 34 sqcld φD2
83 69 82 mulcomd φA2D2=D2A2
84 81 83 eqtrd φAD2=D2A2
85 64 84 oveq12d φCA2+AD2=C2A2+D2A2
86 49 zcnd φC2
87 86 82 69 adddird φC2+D2A2=C2A2+D2A2
88 85 87 eqtr4d φCA2+AD2=C2+D2A2
89 9 oveq1d φPA2=C2+D2A2
90 88 89 eqtr4d φCA2+AD2=PA2
91 80 90 oveq12d φCA2+CB2-CA2+AD2=PC2 NPA2
92 51 zcnd φC2 N
93 74 92 69 subdid φPC2 NA2=PC2 NPA2
94 91 93 eqtr4d φCA2+CB2-CA2+AD2=PC2 NA2
95 62 94 eqtr3d φCB2AD2=PC2 NA2
96 subsq CBADCB2AD2=CB+ADCBAD
97 38 40 96 syl2anc φCB2AD2=CB+ADCBAD
98 95 97 eqtr3d φPC2 NA2=CB+ADCBAD
99 56 98 breqtrd φPCB+ADCBAD
100 37 39 zaddcld φCB+AD
101 37 39 zsubcld φCBAD
102 euclemma PCB+ADCBADPCB+ADCBADPCB+ADPCBAD
103 3 100 101 102 syl3anc φPCB+ADCBADPCB+ADPCBAD
104 99 103 mpbid φPCB+ADPCBAD
105 19 45 104 mpjaodan φNS