| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3dim0.j |
|
| 2 |
|
3dim0.l |
|
| 3 |
|
3dim0.a |
|
| 4 |
1 2 3
|
3dim2 |
|
| 5 |
4
|
3adant3r1 |
|
| 6 |
|
simpl2l |
|
| 7 |
|
simp3l |
|
| 8 |
|
simp1l |
|
| 9 |
|
simp1r2 |
|
| 10 |
1 3
|
hlatjidm |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
11
|
oveq1d |
|
| 13 |
12
|
breq2d |
|
| 14 |
7 13
|
mtbird |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
oveq1d |
|
| 17 |
16
|
breq2d |
|
| 18 |
17
|
notbid |
|
| 19 |
18
|
biimparc |
|
| 20 |
14 19
|
sylan |
|
| 21 |
|
breq1 |
|
| 22 |
21
|
notbid |
|
| 23 |
22
|
rspcev |
|
| 24 |
6 20 23
|
syl2anc |
|
| 25 |
|
simp2l |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
7
|
ad2antrr |
|
| 28 |
1 3
|
hlatjass |
|
| 29 |
28
|
3ad2ant1 |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
8
|
hllatd |
|
| 32 |
|
simp1r1 |
|
| 33 |
|
eqid |
|
| 34 |
33 3
|
atbase |
|
| 35 |
32 34
|
syl |
|
| 36 |
|
simp1r3 |
|
| 37 |
33 1 3
|
hlatjcl |
|
| 38 |
8 9 36 37
|
syl3anc |
|
| 39 |
31 35 38
|
3jca |
|
| 40 |
39
|
adantr |
|
| 41 |
33 2 1
|
latleeqj1 |
|
| 42 |
40 41
|
syl |
|
| 43 |
42
|
biimpa |
|
| 44 |
30 43
|
eqtrd |
|
| 45 |
44
|
breq2d |
|
| 46 |
27 45
|
mtbird |
|
| 47 |
26 46 23
|
syl2anc |
|
| 48 |
|
simpl2r |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
8 32 9
|
3jca |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
36 25
|
jca |
|
| 53 |
52
|
ad3antrrr |
|
| 54 |
|
simpl3r |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
|
simplr |
|
| 57 |
|
simpr |
|
| 58 |
1 2 3
|
3dimlem3a |
|
| 59 |
51 53 55 56 57 58
|
syl113anc |
|
| 60 |
|
breq1 |
|
| 61 |
60
|
notbid |
|
| 62 |
61
|
rspcev |
|
| 63 |
49 59 62
|
syl2anc |
|
| 64 |
|
simpl2l |
|
| 65 |
64
|
ad2antrr |
|
| 66 |
50
|
ad3antrrr |
|
| 67 |
52
|
ad3antrrr |
|
| 68 |
|
simpl3l |
|
| 69 |
68
|
ad2antrr |
|
| 70 |
|
simplr |
|
| 71 |
|
simpr |
|
| 72 |
1 2 3
|
3dimlem4a |
|
| 73 |
66 67 69 70 71 72
|
syl113anc |
|
| 74 |
65 73 23
|
syl2anc |
|
| 75 |
63 74
|
pm2.61dan |
|
| 76 |
47 75
|
pm2.61dan |
|
| 77 |
24 76
|
pm2.61dane |
|
| 78 |
77
|
3exp |
|
| 79 |
78
|
rexlimdvv |
|
| 80 |
5 79
|
mpd |
|