Metamath Proof Explorer


Theorem 3dim3

Description: Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dim3 KHLPAQARAsA¬s˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 1 2 3 3dim2 KHLQARAvAwA¬v˙Q˙R¬w˙Q˙R˙v
5 4 3adant3r1 KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙v
6 simpl2l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vP=QvA
7 simp3l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙v¬v˙Q˙R
8 simp1l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vKHL
9 simp1r2 KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vQA
10 1 3 hlatjidm KHLQAQ˙Q=Q
11 8 9 10 syl2anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vQ˙Q=Q
12 11 oveq1d KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vQ˙Q˙R=Q˙R
13 12 breq2d KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vv˙Q˙Q˙Rv˙Q˙R
14 7 13 mtbird KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙v¬v˙Q˙Q˙R
15 oveq1 P=QP˙Q=Q˙Q
16 15 oveq1d P=QP˙Q˙R=Q˙Q˙R
17 16 breq2d P=Qv˙P˙Q˙Rv˙Q˙Q˙R
18 17 notbid P=Q¬v˙P˙Q˙R¬v˙Q˙Q˙R
19 18 biimparc ¬v˙Q˙Q˙RP=Q¬v˙P˙Q˙R
20 14 19 sylan KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vP=Q¬v˙P˙Q˙R
21 breq1 s=vs˙P˙Q˙Rv˙P˙Q˙R
22 21 notbid s=v¬s˙P˙Q˙R¬v˙P˙Q˙R
23 22 rspcev vA¬v˙P˙Q˙RsA¬s˙P˙Q˙R
24 6 20 23 syl2anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vP=QsA¬s˙P˙Q˙R
25 simp2l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vvA
26 25 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RvA
27 7 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙R¬v˙Q˙R
28 1 3 hlatjass KHLPAQARAP˙Q˙R=P˙Q˙R
29 28 3ad2ant1 KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vP˙Q˙R=P˙Q˙R
30 29 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RP˙Q˙R=P˙Q˙R
31 8 hllatd KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vKLat
32 simp1r1 KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPA
33 eqid BaseK=BaseK
34 33 3 atbase PAPBaseK
35 32 34 syl KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPBaseK
36 simp1r3 KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vRA
37 33 1 3 hlatjcl KHLQARAQ˙RBaseK
38 8 9 36 37 syl3anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vQ˙RBaseK
39 31 35 38 3jca KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vKLatPBaseKQ˙RBaseK
40 39 adantr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQKLatPBaseKQ˙RBaseK
41 33 2 1 latleeqj1 KLatPBaseKQ˙RBaseKP˙Q˙RP˙Q˙R=Q˙R
42 40 41 syl KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RP˙Q˙R=Q˙R
43 42 biimpa KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RP˙Q˙R=Q˙R
44 30 43 eqtrd KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RP˙Q˙R=Q˙R
45 44 breq2d KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙Rv˙P˙Q˙Rv˙Q˙R
46 27 45 mtbird KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙R¬v˙P˙Q˙R
47 26 46 23 syl2anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQP˙Q˙RsA¬s˙P˙Q˙R
48 simpl2r KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQwA
49 48 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙vwA
50 8 32 9 3jca KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vKHLPAQA
51 50 ad3antrrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙vKHLPAQA
52 36 25 jca KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vRAvA
53 52 ad3antrrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙vRAvA
54 simpl3r KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬w˙Q˙R˙v
55 54 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙v¬w˙Q˙R˙v
56 simplr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙v¬P˙Q˙R
57 simpr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙vP˙Q˙R˙v
58 1 2 3 3dimlem3a KHLPAQARAvA¬w˙Q˙R˙v¬P˙Q˙RP˙Q˙R˙v¬w˙P˙Q˙R
59 51 53 55 56 57 58 syl113anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙v¬w˙P˙Q˙R
60 breq1 s=ws˙P˙Q˙Rw˙P˙Q˙R
61 60 notbid s=w¬s˙P˙Q˙R¬w˙P˙Q˙R
62 61 rspcev wA¬w˙P˙Q˙RsA¬s˙P˙Q˙R
63 49 59 62 syl2anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RP˙Q˙R˙vsA¬s˙P˙Q˙R
64 simpl2l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQvA
65 64 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙vvA
66 50 ad3antrrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙vKHLPAQA
67 52 ad3antrrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙vRAvA
68 simpl3l KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬v˙Q˙R
69 68 ad2antrr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙v¬v˙Q˙R
70 simplr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙v¬P˙Q˙R
71 simpr KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙v¬P˙Q˙R˙v
72 1 2 3 3dimlem4a KHLPAQARAvA¬v˙Q˙R¬P˙Q˙R¬P˙Q˙R˙v¬v˙P˙Q˙R
73 66 67 69 70 71 72 syl113anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙v¬v˙P˙Q˙R
74 65 73 23 syl2anc KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙R¬P˙Q˙R˙vsA¬s˙P˙Q˙R
75 63 74 pm2.61dan KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQ¬P˙Q˙RsA¬s˙P˙Q˙R
76 47 75 pm2.61dan KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vPQsA¬s˙P˙Q˙R
77 24 76 pm2.61dane KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vsA¬s˙P˙Q˙R
78 77 3exp KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vsA¬s˙P˙Q˙R
79 78 rexlimdvv KHLPAQARAvAwA¬v˙Q˙R¬w˙Q˙R˙vsA¬s˙P˙Q˙R
80 5 79 mpd KHLPAQARAsA¬s˙P˙Q˙R