Metamath Proof Explorer


Theorem 4cphipval2

Description: Four times the inner product value cphipval2 . (Contributed by NM, 1-Feb-2008) (Revised by AV, 18-Oct-2021)

Ref Expression
Hypotheses cphipfval.x X=BaseW
cphipfval.p +˙=+W
cphipfval.s ·˙=W
cphipfval.n N=normW
cphipfval.i ,˙=𝑖W
cphipval2.m -˙=-W
cphipval2.f F=ScalarW
cphipval2.k K=BaseF
Assertion 4cphipval2 WCPreHiliKAXBX4A,˙B=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B2

Proof

Step Hyp Ref Expression
1 cphipfval.x X=BaseW
2 cphipfval.p +˙=+W
3 cphipfval.s ·˙=W
4 cphipfval.n N=normW
5 cphipfval.i ,˙=𝑖W
6 cphipval2.m -˙=-W
7 cphipval2.f F=ScalarW
8 cphipval2.k K=BaseF
9 1 2 3 4 5 6 7 8 cphipval2 WCPreHiliKAXBXA,˙B=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24
10 9 oveq2d WCPreHiliKAXBX4A,˙B=4NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24
11 7 8 cphsubrg WCPreHilKSubRingfld
12 cnfldbas =Basefld
13 12 subrgss KSubRingfldK
14 11 13 syl WCPreHilK
15 14 adantr WCPreHiliKK
16 15 3ad2ant1 WCPreHiliKAXBXK
17 simp1l WCPreHiliKAXBXWCPreHil
18 cphngp WCPreHilWNrmGrp
19 ngpgrp WNrmGrpWGrp
20 18 19 syl WCPreHilWGrp
21 20 adantr WCPreHiliKWGrp
22 1 2 grpcl WGrpAXBXA+˙BX
23 21 22 syl3an1 WCPreHiliKAXBXA+˙BX
24 1 5 4 7 8 cphnmcl WCPreHilA+˙BXNA+˙BK
25 17 23 24 syl2anc WCPreHiliKAXBXNA+˙BK
26 16 25 sseldd WCPreHiliKAXBXNA+˙B
27 26 sqcld WCPreHiliKAXBXNA+˙B2
28 1 6 grpsubcl WGrpAXBXA-˙BX
29 21 28 syl3an1 WCPreHiliKAXBXA-˙BX
30 1 5 4 7 8 cphnmcl WCPreHilA-˙BXNA-˙BK
31 17 29 30 syl2anc WCPreHiliKAXBXNA-˙BK
32 16 31 sseldd WCPreHiliKAXBXNA-˙B
33 32 sqcld WCPreHiliKAXBXNA-˙B2
34 27 33 subcld WCPreHiliKAXBXNA+˙B2NA-˙B2
35 ax-icn i
36 35 a1i WCPreHiliKAXBXi
37 17 20 syl WCPreHiliKAXBXWGrp
38 simp2 WCPreHiliKAXBXAX
39 cphlmod WCPreHilWLMod
40 39 adantr WCPreHiliKWLMod
41 40 3ad2ant1 WCPreHiliKAXBXWLMod
42 simp1r WCPreHiliKAXBXiK
43 simp3 WCPreHiliKAXBXBX
44 1 7 3 8 lmodvscl WLModiKBXi·˙BX
45 41 42 43 44 syl3anc WCPreHiliKAXBXi·˙BX
46 1 2 grpcl WGrpAXi·˙BXA+˙i·˙BX
47 37 38 45 46 syl3anc WCPreHiliKAXBXA+˙i·˙BX
48 1 5 4 7 8 cphnmcl WCPreHilA+˙i·˙BXNA+˙i·˙BK
49 17 47 48 syl2anc WCPreHiliKAXBXNA+˙i·˙BK
50 16 49 sseldd WCPreHiliKAXBXNA+˙i·˙B
51 50 sqcld WCPreHiliKAXBXNA+˙i·˙B2
52 1 6 grpsubcl WGrpAXi·˙BXA-˙i·˙BX
53 37 38 45 52 syl3anc WCPreHiliKAXBXA-˙i·˙BX
54 1 5 4 7 8 cphnmcl WCPreHilA-˙i·˙BXNA-˙i·˙BK
55 17 53 54 syl2anc WCPreHiliKAXBXNA-˙i·˙BK
56 16 55 sseldd WCPreHiliKAXBXNA-˙i·˙B
57 56 sqcld WCPreHiliKAXBXNA-˙i·˙B2
58 51 57 subcld WCPreHiliKAXBXNA+˙i·˙B2NA-˙i·˙B2
59 36 58 mulcld WCPreHiliKAXBXiNA+˙i·˙B2NA-˙i·˙B2
60 34 59 addcld WCPreHiliKAXBXNA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B2
61 4cn 4
62 61 a1i WCPreHiliKAXBX4
63 4ne0 40
64 63 a1i WCPreHiliKAXBX40
65 60 62 64 divcan2d WCPreHiliKAXBX4NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B2
66 10 65 eqtrd WCPreHiliKAXBX4A,˙B=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B2