Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4sq.1 | |
|
4sq.2 | |
||
4sq.3 | |
||
4sq.4 | |
||
4sq.5 | |
||
4sq.6 | |
||
4sq.7 | |
||
Assertion | 4sqlem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | |
|
2 | 4sq.2 | |
|
3 | 4sq.3 | |
|
4 | 4sq.4 | |
|
5 | 4sq.5 | |
|
6 | 4sq.6 | |
|
7 | 4sq.7 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 2 3 4 8 9 | 4sqlem12 | |
11 | simplrl | |
|
12 | elfznn | |
|
13 | 11 12 | syl | |
14 | simpr | |
|
15 | abs1 | |
|
16 | 15 | oveq1i | |
17 | sq1 | |
|
18 | 16 17 | eqtri | |
19 | 18 | oveq2i | |
20 | simplrr | |
|
21 | 1z | |
|
22 | zgz | |
|
23 | 21 22 | ax-mp | |
24 | 1 | 4sqlem4a | |
25 | 20 23 24 | sylancl | |
26 | 19 25 | eqeltrrid | |
27 | 14 26 | eqeltrrd | |
28 | oveq1 | |
|
29 | 28 | eleq1d | |
30 | 29 6 | elrab2 | |
31 | 13 27 30 | sylanbrc | |
32 | 31 | ne0d | |
33 | 6 | ssrab3 | |
34 | nnuz | |
|
35 | 33 34 | sseqtri | |
36 | infssuzcl | |
|
37 | 35 32 36 | sylancr | |
38 | 7 37 | eqeltrid | |
39 | 33 38 | sselid | |
40 | 39 | nnred | |
41 | 13 | nnred | |
42 | 4 | ad2antrr | |
43 | prmnn | |
|
44 | 42 43 | syl | |
45 | 44 | nnred | |
46 | infssuzle | |
|
47 | 35 31 46 | sylancr | |
48 | 7 47 | eqbrtrid | |
49 | prmz | |
|
50 | 42 49 | syl | |
51 | elfzm11 | |
|
52 | 21 50 51 | sylancr | |
53 | 11 52 | mpbid | |
54 | 53 | simp3d | |
55 | 40 41 45 48 54 | lelttrd | |
56 | 32 55 | jca | |
57 | 56 | ex | |
58 | 57 | rexlimdvva | |
59 | 10 58 | mpd | |