Metamath Proof Explorer


Theorem 4sqlem13

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses 4sq.1 S=n|xyzwn=x2+y2+z2+w2
4sq.2 φN
4sq.3 φP=2 N+1
4sq.4 φP
4sq.5 φ02 NS
4sq.6 T=i|iPS
4sq.7 M=supT<
Assertion 4sqlem13 φTM<P

Proof

Step Hyp Ref Expression
1 4sq.1 S=n|xyzwn=x2+y2+z2+w2
2 4sq.2 φN
3 4sq.3 φP=2 N+1
4 4sq.4 φP
5 4sq.5 φ02 NS
6 4sq.6 T=i|iPS
7 4sq.7 M=supT<
8 eqid u|m0Nu=m2modP=u|m0Nu=m2modP
9 eqid vu|m0Nu=m2modPP-1-v=vu|m0Nu=m2modPP-1-v
10 1 2 3 4 8 9 4sqlem12 φk1P1uiu2+1=kP
11 simplrl φk1P1uiu2+1=kPk1P1
12 elfznn k1P1k
13 11 12 syl φk1P1uiu2+1=kPk
14 simpr φk1P1uiu2+1=kPu2+1=kP
15 abs1 1=1
16 15 oveq1i 12=12
17 sq1 12=1
18 16 17 eqtri 12=1
19 18 oveq2i u2+12=u2+1
20 simplrr φk1P1uiu2+1=kPui
21 1z 1
22 zgz 11i
23 21 22 ax-mp 1i
24 1 4sqlem4a ui1iu2+12S
25 20 23 24 sylancl φk1P1uiu2+1=kPu2+12S
26 19 25 eqeltrrid φk1P1uiu2+1=kPu2+1S
27 14 26 eqeltrrd φk1P1uiu2+1=kPkPS
28 oveq1 i=kiP=kP
29 28 eleq1d i=kiPSkPS
30 29 6 elrab2 kTkkPS
31 13 27 30 sylanbrc φk1P1uiu2+1=kPkT
32 31 ne0d φk1P1uiu2+1=kPT
33 6 ssrab3 T
34 nnuz =1
35 33 34 sseqtri T1
36 infssuzcl T1TsupT<T
37 35 32 36 sylancr φk1P1uiu2+1=kPsupT<T
38 7 37 eqeltrid φk1P1uiu2+1=kPMT
39 33 38 sselid φk1P1uiu2+1=kPM
40 39 nnred φk1P1uiu2+1=kPM
41 13 nnred φk1P1uiu2+1=kPk
42 4 ad2antrr φk1P1uiu2+1=kPP
43 prmnn PP
44 42 43 syl φk1P1uiu2+1=kPP
45 44 nnred φk1P1uiu2+1=kPP
46 infssuzle T1kTsupT<k
47 35 31 46 sylancr φk1P1uiu2+1=kPsupT<k
48 7 47 eqbrtrid φk1P1uiu2+1=kPMk
49 prmz PP
50 42 49 syl φk1P1uiu2+1=kPP
51 elfzm11 1Pk1P1k1kk<P
52 21 50 51 sylancr φk1P1uiu2+1=kPk1P1k1kk<P
53 11 52 mpbid φk1P1uiu2+1=kPk1kk<P
54 53 simp3d φk1P1uiu2+1=kPk<P
55 40 41 45 48 54 lelttrd φk1P1uiu2+1=kPM<P
56 32 55 jca φk1P1uiu2+1=kPTM<P
57 56 ex φk1P1uiu2+1=kPTM<P
58 57 rexlimdvva φk1P1uiu2+1=kPTM<P
59 10 58 mpd φTM<P