Metamath Proof Explorer


Theorem 4sqlem12

Description: Lemma for 4sq . For any odd prime P , there is a k < P such that k P - 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
4sq.2 φ N
4sq.3 φ P = 2 N + 1
4sq.4 φ P
4sqlem11.5 A = u | m 0 N u = m 2 mod P
4sqlem11.6 F = v A P - 1 - v
Assertion 4sqlem12 φ k 1 P 1 u i u 2 + 1 = k P

Proof

Step Hyp Ref Expression
1 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
2 4sq.2 φ N
3 4sq.3 φ P = 2 N + 1
4 4sq.4 φ P
5 4sqlem11.5 A = u | m 0 N u = m 2 mod P
6 4sqlem11.6 F = v A P - 1 - v
7 1 2 3 4 5 6 4sqlem11 φ A ran F
8 n0 A ran F j j A ran F
9 7 8 sylib φ j j A ran F
10 vex j V
11 eqeq1 u = j u = m 2 mod P j = m 2 mod P
12 11 rexbidv u = j m 0 N u = m 2 mod P m 0 N j = m 2 mod P
13 10 12 5 elab2 j A m 0 N j = m 2 mod P
14 abid j j | v A j = P - 1 - v v A j = P - 1 - v
15 5 rexeqi v A j = P - 1 - v v u | m 0 N u = m 2 mod P j = P - 1 - v
16 oveq1 m = n m 2 = n 2
17 16 oveq1d m = n m 2 mod P = n 2 mod P
18 17 eqeq2d m = n u = m 2 mod P u = n 2 mod P
19 18 cbvrexvw m 0 N u = m 2 mod P n 0 N u = n 2 mod P
20 eqeq1 u = v u = n 2 mod P v = n 2 mod P
21 20 rexbidv u = v n 0 N u = n 2 mod P n 0 N v = n 2 mod P
22 19 21 syl5bb u = v m 0 N u = m 2 mod P n 0 N v = n 2 mod P
23 22 rexab v u | m 0 N u = m 2 mod P j = P - 1 - v v n 0 N v = n 2 mod P j = P - 1 - v
24 14 15 23 3bitri j j | v A j = P - 1 - v v n 0 N v = n 2 mod P j = P - 1 - v
25 6 rnmpt ran F = j | v A j = P - 1 - v
26 25 eleq2i j ran F j j | v A j = P - 1 - v
27 rexcom4 n 0 N v v = n 2 mod P j = P - 1 - v v n 0 N v = n 2 mod P j = P - 1 - v
28 r19.41v n 0 N v = n 2 mod P j = P - 1 - v n 0 N v = n 2 mod P j = P - 1 - v
29 28 exbii v n 0 N v = n 2 mod P j = P - 1 - v v n 0 N v = n 2 mod P j = P - 1 - v
30 27 29 bitri n 0 N v v = n 2 mod P j = P - 1 - v v n 0 N v = n 2 mod P j = P - 1 - v
31 24 26 30 3bitr4i j ran F n 0 N v v = n 2 mod P j = P - 1 - v
32 ovex n 2 mod P V
33 oveq2 v = n 2 mod P P - 1 - v = P - 1 - n 2 mod P
34 33 eqeq2d v = n 2 mod P j = P - 1 - v j = P - 1 - n 2 mod P
35 32 34 ceqsexv v v = n 2 mod P j = P - 1 - v j = P - 1 - n 2 mod P
36 35 rexbii n 0 N v v = n 2 mod P j = P - 1 - v n 0 N j = P - 1 - n 2 mod P
37 31 36 bitri j ran F n 0 N j = P - 1 - n 2 mod P
38 13 37 anbi12i j A j ran F m 0 N j = m 2 mod P n 0 N j = P - 1 - n 2 mod P
39 elin j A ran F j A j ran F
40 reeanv m 0 N n 0 N j = m 2 mod P j = P - 1 - n 2 mod P m 0 N j = m 2 mod P n 0 N j = P - 1 - n 2 mod P
41 38 39 40 3bitr4i j A ran F m 0 N n 0 N j = m 2 mod P j = P - 1 - n 2 mod P
42 eqtr2 j = m 2 mod P j = P - 1 - n 2 mod P m 2 mod P = P - 1 - n 2 mod P
43 4 3ad2ant1 φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P
44 prmnn P P
45 43 44 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P
46 nnm1nn0 P P 1 0
47 45 46 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1 0
48 47 nn0red φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1
49 45 nnrpd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P +
50 47 nn0ge0d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 P 1
51 45 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P
52 51 ltm1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1 < P
53 modid P 1 P + 0 P 1 P 1 < P P 1 mod P = P 1
54 48 49 50 52 53 syl22anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1 mod P = P 1
55 54 oveq1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1 mod P n 2 mod P = P - 1 - n 2 mod P
56 simp2r φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 0 N
57 elfzelz n 0 N n
58 56 57 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n
59 zsqcl2 n n 2 0
60 58 59 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 0
61 60 nn0red φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2
62 modlt n 2 P + n 2 mod P < P
63 61 49 62 syl2anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P < P
64 zsqcl n n 2
65 58 64 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2
66 65 45 zmodcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P 0
67 66 nn0zd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P
68 prmz P P
69 43 68 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P
70 zltlem1 n 2 mod P P n 2 mod P < P n 2 mod P P 1
71 67 69 70 syl2anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P < P n 2 mod P P 1
72 63 71 mpbid φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P P 1
73 72 54 breqtrrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P P 1 mod P
74 modsubdir P 1 n 2 P + n 2 mod P P 1 mod P P - 1 - n 2 mod P = P 1 mod P n 2 mod P
75 48 61 49 74 syl3anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 mod P P 1 mod P P - 1 - n 2 mod P = P 1 mod P n 2 mod P
76 73 75 mpbid φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P - 1 - n 2 mod P = P 1 mod P n 2 mod P
77 simp3 φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 mod P = P - 1 - n 2 mod P
78 55 76 77 3eqtr4rd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 mod P = P - 1 - n 2 mod P
79 simp2l φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 0 N
80 elfzelz m 0 N m
81 79 80 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m
82 zsqcl m m 2
83 81 82 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2
84 47 nn0zd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1
85 84 65 zsubcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P - 1 - n 2
86 moddvds P m 2 P - 1 - n 2 m 2 mod P = P - 1 - n 2 mod P P m 2 P - 1 - n 2
87 45 83 85 86 syl3anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 mod P = P - 1 - n 2 mod P P m 2 P - 1 - n 2
88 78 87 mpbid φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P m 2 P - 1 - n 2
89 zsqcl2 m m 2 0
90 81 89 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 0
91 90 nn0cnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2
92 47 nn0cnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 1
93 60 nn0cnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2
94 91 92 93 subsub3d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 P - 1 - n 2 = m 2 + n 2 - P 1
95 90 60 nn0addcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 0
96 95 nn0cnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2
97 45 nncnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P
98 1cnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 1
99 96 97 98 subsub3d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 - P 1 = m 2 + n 2 + 1 - P
100 94 99 eqtrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 P - 1 - n 2 = m 2 + n 2 + 1 - P
101 88 100 breqtrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P m 2 + n 2 + 1 - P
102 nn0p1nn m 2 + n 2 0 m 2 + n 2 + 1
103 95 102 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1
104 103 nnzd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1
105 dvdssubr P m 2 + n 2 + 1 P m 2 + n 2 + 1 P m 2 + n 2 + 1 - P
106 69 104 105 syl2anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P m 2 + n 2 + 1 P m 2 + n 2 + 1 - P
107 101 106 mpbird φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P m 2 + n 2 + 1
108 45 nnne0d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 0
109 dvdsval2 P P 0 m 2 + n 2 + 1 P m 2 + n 2 + 1 m 2 + n 2 + 1 P
110 69 108 104 109 syl3anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P m 2 + n 2 + 1 m 2 + n 2 + 1 P
111 107 110 mpbid φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P
112 nnrp m 2 + n 2 + 1 m 2 + n 2 + 1 +
113 nnrp P P +
114 rpdivcl m 2 + n 2 + 1 + P + m 2 + n 2 + 1 P +
115 112 113 114 syl2an m 2 + n 2 + 1 P m 2 + n 2 + 1 P +
116 103 45 115 syl2anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P +
117 116 rpgt0d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 < m 2 + n 2 + 1 P
118 elnnz m 2 + n 2 + 1 P m 2 + n 2 + 1 P 0 < m 2 + n 2 + 1 P
119 111 117 118 sylanbrc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P
120 119 nnge1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 1 m 2 + n 2 + 1 P
121 95 nn0red φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2
122 2nn 2
123 2 3ad2ant1 φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N
124 nnmulcl 2 N 2 N
125 122 123 124 sylancr φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N
126 125 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N
127 126 resqcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2
128 nnmulcl 2 2 N 2 2 N
129 122 125 128 sylancr φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 2 N
130 129 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 2 N
131 127 130 readdcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 + 2 2 N
132 1red φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 1
133 123 nnsqcld φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N 2
134 nnmulcl 2 N 2 2 N 2
135 122 133 134 sylancr φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2
136 135 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2
137 90 nn0red φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2
138 133 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N 2
139 81 zred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m
140 elfzle1 m 0 N 0 m
141 79 140 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 m
142 123 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N
143 elfzle2 m 0 N m N
144 79 143 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m N
145 le2sq2 m 0 m N m N m 2 N 2
146 139 141 142 144 145 syl22anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 N 2
147 58 zred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n
148 elfzle1 n 0 N 0 n
149 56 148 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 n
150 elfzle2 n 0 N n N
151 56 150 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n N
152 le2sq2 n 0 n N n N n 2 N 2
153 147 149 142 151 152 syl22anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P n 2 N 2
154 137 61 138 138 146 153 le2addd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 N 2 + N 2
155 133 nncnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N 2
156 155 2timesd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 = N 2 + N 2
157 154 156 breqtrrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 2 N 2
158 2lt4 2 < 4
159 2re 2
160 159 a1i φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2
161 4re 4
162 161 a1i φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 4
163 133 nngt0d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 < N 2
164 ltmul1 2 4 N 2 0 < N 2 2 < 4 2 N 2 < 4 N 2
165 160 162 138 163 164 syl112anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 < 4 2 N 2 < 4 N 2
166 158 165 mpbii φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 < 4 N 2
167 2cn 2
168 123 nncnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P N
169 sqmul 2 N 2 N 2 = 2 2 N 2
170 167 168 169 sylancr φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 = 2 2 N 2
171 sq2 2 2 = 4
172 171 oveq1i 2 2 N 2 = 4 N 2
173 170 172 eqtrdi φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 = 4 N 2
174 166 173 breqtrrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 < 2 N 2
175 121 136 127 157 174 lelttrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 < 2 N 2
176 129 nnrpd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 2 N +
177 127 176 ltaddrpd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N 2 < 2 N 2 + 2 2 N
178 121 127 131 175 177 lttrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 < 2 N 2 + 2 2 N
179 121 131 132 178 ltadd1dd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 < 2 N 2 + 2 2 N + 1
180 3 3ad2ant1 φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P = 2 N + 1
181 180 oveq1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 2 = 2 N + 1 2
182 97 sqvald φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P 2 = P P
183 125 nncnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N
184 binom21 2 N 2 N + 1 2 = 2 N 2 + 2 2 N + 1
185 183 184 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 2 N + 1 2 = 2 N 2 + 2 2 N + 1
186 181 182 185 3eqtr3d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P P P = 2 N 2 + 2 2 N + 1
187 179 186 breqtrrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 < P P
188 103 nnred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1
189 45 nngt0d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P 0 < P
190 ltdivmul m 2 + n 2 + 1 P P 0 < P m 2 + n 2 + 1 P < P m 2 + n 2 + 1 < P P
191 188 51 51 189 190 syl112anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P < P m 2 + n 2 + 1 < P P
192 187 191 mpbird φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P < P
193 1z 1
194 elfzm11 1 P m 2 + n 2 + 1 P 1 P 1 m 2 + n 2 + 1 P 1 m 2 + n 2 + 1 P m 2 + n 2 + 1 P < P
195 193 69 194 sylancr φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P 1 P 1 m 2 + n 2 + 1 P 1 m 2 + n 2 + 1 P m 2 + n 2 + 1 P < P
196 111 120 192 195 mpbir3and φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P 1 P 1
197 gzreim m n m + i n i
198 81 58 197 syl2anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n i
199 gzcn m + i n i m + i n
200 198 199 syl φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n
201 200 absvalsq2d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 = m + i n 2 + m + i n 2
202 139 147 crred φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n = m
203 202 oveq1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 = m 2
204 139 147 crimd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n = n
205 204 oveq1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 = n 2
206 203 205 oveq12d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 + m + i n 2 = m 2 + n 2
207 201 206 eqtrd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 = m 2 + n 2
208 207 oveq1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 + 1 = m 2 + n 2 + 1
209 103 nncnd φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1
210 209 97 108 divcan1d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m 2 + n 2 + 1 P P = m 2 + n 2 + 1
211 208 210 eqtr4d φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P m + i n 2 + 1 = m 2 + n 2 + 1 P P
212 oveq1 k = m 2 + n 2 + 1 P k P = m 2 + n 2 + 1 P P
213 212 eqeq2d k = m 2 + n 2 + 1 P u 2 + 1 = k P u 2 + 1 = m 2 + n 2 + 1 P P
214 fveq2 u = m + i n u = m + i n
215 214 oveq1d u = m + i n u 2 = m + i n 2
216 215 oveq1d u = m + i n u 2 + 1 = m + i n 2 + 1
217 216 eqeq1d u = m + i n u 2 + 1 = m 2 + n 2 + 1 P P m + i n 2 + 1 = m 2 + n 2 + 1 P P
218 213 217 rspc2ev m 2 + n 2 + 1 P 1 P 1 m + i n i m + i n 2 + 1 = m 2 + n 2 + 1 P P k 1 P 1 u i u 2 + 1 = k P
219 196 198 211 218 syl3anc φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P k 1 P 1 u i u 2 + 1 = k P
220 219 3expia φ m 0 N n 0 N m 2 mod P = P - 1 - n 2 mod P k 1 P 1 u i u 2 + 1 = k P
221 42 220 syl5 φ m 0 N n 0 N j = m 2 mod P j = P - 1 - n 2 mod P k 1 P 1 u i u 2 + 1 = k P
222 221 rexlimdvva φ m 0 N n 0 N j = m 2 mod P j = P - 1 - n 2 mod P k 1 P 1 u i u 2 + 1 = k P
223 41 222 syl5bi φ j A ran F k 1 P 1 u i u 2 + 1 = k P
224 223 exlimdv φ j j A ran F k 1 P 1 u i u 2 + 1 = k P
225 9 224 mpd φ k 1 P 1 u i u 2 + 1 = k P