| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
| 2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
| 4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
4sqlem11.5 |
|- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
| 6 |
|
4sqlem11.6 |
|- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
| 7 |
1 2 3 4 5 6
|
4sqlem11 |
|- ( ph -> ( A i^i ran F ) =/= (/) ) |
| 8 |
|
n0 |
|- ( ( A i^i ran F ) =/= (/) <-> E. j j e. ( A i^i ran F ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> E. j j e. ( A i^i ran F ) ) |
| 10 |
|
vex |
|- j e. _V |
| 11 |
|
eqeq1 |
|- ( u = j -> ( u = ( ( m ^ 2 ) mod P ) <-> j = ( ( m ^ 2 ) mod P ) ) ) |
| 12 |
11
|
rexbidv |
|- ( u = j -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) ) |
| 13 |
10 12 5
|
elab2 |
|- ( j e. A <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) |
| 14 |
|
abid |
|- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v e. A j = ( ( P - 1 ) - v ) ) |
| 15 |
5
|
rexeqi |
|- ( E. v e. A j = ( ( P - 1 ) - v ) <-> E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) ) |
| 16 |
|
oveq1 |
|- ( m = n -> ( m ^ 2 ) = ( n ^ 2 ) ) |
| 17 |
16
|
oveq1d |
|- ( m = n -> ( ( m ^ 2 ) mod P ) = ( ( n ^ 2 ) mod P ) ) |
| 18 |
17
|
eqeq2d |
|- ( m = n -> ( u = ( ( m ^ 2 ) mod P ) <-> u = ( ( n ^ 2 ) mod P ) ) ) |
| 19 |
18
|
cbvrexvw |
|- ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) ) |
| 20 |
|
eqeq1 |
|- ( u = v -> ( u = ( ( n ^ 2 ) mod P ) <-> v = ( ( n ^ 2 ) mod P ) ) ) |
| 21 |
20
|
rexbidv |
|- ( u = v -> ( E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
| 22 |
19 21
|
bitrid |
|- ( u = v -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
| 23 |
22
|
rexab |
|- ( E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 24 |
14 15 23
|
3bitri |
|- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 25 |
6
|
rnmpt |
|- ran F = { j | E. v e. A j = ( ( P - 1 ) - v ) } |
| 26 |
25
|
eleq2i |
|- ( j e. ran F <-> j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } ) |
| 27 |
|
rexcom4 |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 28 |
|
r19.41v |
|- ( E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 29 |
28
|
exbii |
|- ( E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 30 |
27 29
|
bitri |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 31 |
24 26 30
|
3bitr4i |
|- ( j e. ran F <-> E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 32 |
|
ovex |
|- ( ( n ^ 2 ) mod P ) e. _V |
| 33 |
|
oveq2 |
|- ( v = ( ( n ^ 2 ) mod P ) -> ( ( P - 1 ) - v ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( v = ( ( n ^ 2 ) mod P ) -> ( j = ( ( P - 1 ) - v ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 35 |
32 34
|
ceqsexv |
|- ( E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 36 |
35
|
rexbii |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 37 |
31 36
|
bitri |
|- ( j e. ran F <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 38 |
13 37
|
anbi12i |
|- ( ( j e. A /\ j e. ran F ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 39 |
|
elin |
|- ( j e. ( A i^i ran F ) <-> ( j e. A /\ j e. ran F ) ) |
| 40 |
|
reeanv |
|- ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 41 |
38 39 40
|
3bitr4i |
|- ( j e. ( A i^i ran F ) <-> E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 42 |
|
eqtr2 |
|- ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 43 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. Prime ) |
| 44 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. NN ) |
| 46 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. NN0 ) |
| 48 |
47
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. RR ) |
| 49 |
45
|
nnrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR+ ) |
| 50 |
47
|
nn0ge0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ ( P - 1 ) ) |
| 51 |
45
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR ) |
| 52 |
51
|
ltm1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) < P ) |
| 53 |
|
modid |
|- ( ( ( ( P - 1 ) e. RR /\ P e. RR+ ) /\ ( 0 <_ ( P - 1 ) /\ ( P - 1 ) < P ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
| 54 |
48 49 50 52 53
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
| 55 |
54
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 56 |
|
simp2r |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ( 0 ... N ) ) |
| 57 |
56
|
elfzelzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ZZ ) |
| 58 |
|
zsqcl2 |
|- ( n e. ZZ -> ( n ^ 2 ) e. NN0 ) |
| 59 |
57 58
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. NN0 ) |
| 60 |
59
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. RR ) |
| 61 |
|
modlt |
|- ( ( ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( n ^ 2 ) mod P ) < P ) |
| 62 |
60 49 61
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) < P ) |
| 63 |
|
zsqcl |
|- ( n e. ZZ -> ( n ^ 2 ) e. ZZ ) |
| 64 |
57 63
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. ZZ ) |
| 65 |
64 45
|
zmodcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. NN0 ) |
| 66 |
65
|
nn0zd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. ZZ ) |
| 67 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 68 |
43 67
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. ZZ ) |
| 69 |
|
zltlem1 |
|- ( ( ( ( n ^ 2 ) mod P ) e. ZZ /\ P e. ZZ ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
| 70 |
66 68 69
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
| 71 |
62 70
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) |
| 72 |
71 54
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) ) |
| 73 |
|
modsubdir |
|- ( ( ( P - 1 ) e. RR /\ ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 74 |
48 60 49 73
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 75 |
72 74
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) |
| 76 |
|
simp3 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 77 |
55 75 76
|
3eqtr4rd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) ) |
| 78 |
|
simp2l |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ( 0 ... N ) ) |
| 79 |
78
|
elfzelzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ZZ ) |
| 80 |
|
zsqcl |
|- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
| 81 |
79 80
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. ZZ ) |
| 82 |
47
|
nn0zd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. ZZ ) |
| 83 |
82 64
|
zsubcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) |
| 84 |
|
moddvds |
|- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
| 85 |
45 81 83 84
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
| 86 |
77 85
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) |
| 87 |
|
zsqcl2 |
|- ( m e. ZZ -> ( m ^ 2 ) e. NN0 ) |
| 88 |
79 87
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. NN0 ) |
| 89 |
88
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. CC ) |
| 90 |
47
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. CC ) |
| 91 |
59
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. CC ) |
| 92 |
89 90 91
|
subsub3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) ) |
| 93 |
88 59
|
nn0addcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 ) |
| 94 |
93
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) |
| 95 |
45
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. CC ) |
| 96 |
|
1cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. CC ) |
| 97 |
94 95 96
|
subsub3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 98 |
92 97
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 99 |
86 98
|
breqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 100 |
|
nn0p1nn |
|- ( ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
| 101 |
93 100
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
| 102 |
101
|
nnzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) |
| 103 |
|
dvdssubr |
|- ( ( P e. ZZ /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
| 104 |
68 102 103
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
| 105 |
99 104
|
mpbird |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 106 |
45
|
nnne0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P =/= 0 ) |
| 107 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
| 108 |
68 106 102 107
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
| 109 |
105 108
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) |
| 110 |
|
nnrp |
|- ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ ) |
| 111 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
| 112 |
|
rpdivcl |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ /\ P e. RR+ ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
| 113 |
110 111 112
|
syl2an |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN /\ P e. NN ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
| 114 |
101 45 113
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
| 115 |
114
|
rpgt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
| 116 |
|
elnnz |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) ) |
| 117 |
109 115 116
|
sylanbrc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN ) |
| 118 |
117
|
nnge1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
| 119 |
93
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. RR ) |
| 120 |
|
2nn |
|- 2 e. NN |
| 121 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. NN ) |
| 122 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 123 |
120 121 122
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. NN ) |
| 124 |
123
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. RR ) |
| 125 |
124
|
resqcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) e. RR ) |
| 126 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( 2 x. N ) e. NN ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
| 127 |
120 123 126
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
| 128 |
127
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR ) |
| 129 |
125 128
|
readdcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) e. RR ) |
| 130 |
|
1red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. RR ) |
| 131 |
121
|
nnsqcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. NN ) |
| 132 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( N ^ 2 ) e. NN ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
| 133 |
120 131 132
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
| 134 |
133
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. RR ) |
| 135 |
88
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. RR ) |
| 136 |
131
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. RR ) |
| 137 |
79
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. RR ) |
| 138 |
|
elfzle1 |
|- ( m e. ( 0 ... N ) -> 0 <_ m ) |
| 139 |
78 138
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ m ) |
| 140 |
121
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. RR ) |
| 141 |
|
elfzle2 |
|- ( m e. ( 0 ... N ) -> m <_ N ) |
| 142 |
78 141
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m <_ N ) |
| 143 |
|
le2sq2 |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( N e. RR /\ m <_ N ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
| 144 |
137 139 140 142 143
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
| 145 |
57
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. RR ) |
| 146 |
|
elfzle1 |
|- ( n e. ( 0 ... N ) -> 0 <_ n ) |
| 147 |
56 146
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ n ) |
| 148 |
|
elfzle2 |
|- ( n e. ( 0 ... N ) -> n <_ N ) |
| 149 |
56 148
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n <_ N ) |
| 150 |
|
le2sq2 |
|- ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ n <_ N ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
| 151 |
145 147 140 149 150
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
| 152 |
135 60 136 136 144 151
|
le2addd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
| 153 |
131
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. CC ) |
| 154 |
153
|
2timesd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) = ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
| 155 |
152 154
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( 2 x. ( N ^ 2 ) ) ) |
| 156 |
|
2lt4 |
|- 2 < 4 |
| 157 |
|
2re |
|- 2 e. RR |
| 158 |
157
|
a1i |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 2 e. RR ) |
| 159 |
|
4re |
|- 4 e. RR |
| 160 |
159
|
a1i |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 4 e. RR ) |
| 161 |
131
|
nngt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( N ^ 2 ) ) |
| 162 |
|
ltmul1 |
|- ( ( 2 e. RR /\ 4 e. RR /\ ( ( N ^ 2 ) e. RR /\ 0 < ( N ^ 2 ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
| 163 |
158 160 136 161 162
|
syl112anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
| 164 |
156 163
|
mpbii |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) |
| 165 |
|
2cn |
|- 2 e. CC |
| 166 |
121
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. CC ) |
| 167 |
|
sqmul |
|- ( ( 2 e. CC /\ N e. CC ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
| 168 |
165 166 167
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
| 169 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 170 |
169
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) |
| 171 |
168 170
|
eqtrdi |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) |
| 172 |
164 171
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
| 173 |
119 134 125 155 172
|
lelttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
| 174 |
127
|
nnrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR+ ) |
| 175 |
125 174
|
ltaddrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
| 176 |
119 125 129 173 175
|
lttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
| 177 |
119 129 130 176
|
ltadd1dd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 178 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P = ( ( 2 x. N ) + 1 ) ) |
| 179 |
178
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) |
| 180 |
95
|
sqvald |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( P x. P ) ) |
| 181 |
123
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. CC ) |
| 182 |
|
binom21 |
|- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 183 |
181 182
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 184 |
179 180 183
|
3eqtr3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P x. P ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 185 |
177 184
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) |
| 186 |
101
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR ) |
| 187 |
45
|
nngt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < P ) |
| 188 |
|
ltdivmul |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR /\ P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
| 189 |
186 51 51 187 188
|
syl112anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
| 190 |
185 189
|
mpbird |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) |
| 191 |
|
1z |
|- 1 e. ZZ |
| 192 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
| 193 |
191 68 192
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
| 194 |
109 118 190 193
|
mpbir3and |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) ) |
| 195 |
|
gzreim |
|- ( ( m e. ZZ /\ n e. ZZ ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
| 196 |
79 57 195
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
| 197 |
|
gzcn |
|- ( ( m + ( _i x. n ) ) e. Z[i] -> ( m + ( _i x. n ) ) e. CC ) |
| 198 |
196 197
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. CC ) |
| 199 |
198
|
absvalsq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) ) |
| 200 |
137 145
|
crred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Re ` ( m + ( _i x. n ) ) ) = m ) |
| 201 |
200
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( m ^ 2 ) ) |
| 202 |
137 145
|
crimd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Im ` ( m + ( _i x. n ) ) ) = n ) |
| 203 |
202
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( n ^ 2 ) ) |
| 204 |
201 203
|
oveq12d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
| 205 |
199 204
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
| 206 |
205
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 207 |
101
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. CC ) |
| 208 |
207 95 106
|
divcan1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 209 |
206 208
|
eqtr4d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
| 210 |
|
oveq1 |
|- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( k x. P ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
| 211 |
210
|
eqeq2d |
|- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) <-> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
| 212 |
|
fveq2 |
|- ( u = ( m + ( _i x. n ) ) -> ( abs ` u ) = ( abs ` ( m + ( _i x. n ) ) ) ) |
| 213 |
212
|
oveq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( abs ` u ) ^ 2 ) = ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) ) |
| 214 |
213
|
oveq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) ) |
| 215 |
214
|
eqeq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) <-> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
| 216 |
211 215
|
rspc2ev |
|- ( ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) /\ ( m + ( _i x. n ) ) e. Z[i] /\ ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 217 |
194 196 209 216
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 218 |
217
|
3expia |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 219 |
42 218
|
syl5 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 220 |
219
|
rexlimdvva |
|- ( ph -> ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 221 |
41 220
|
biimtrid |
|- ( ph -> ( j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 222 |
221
|
exlimdv |
|- ( ph -> ( E. j j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 223 |
9 222
|
mpd |
|- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |