| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
| 2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
| 4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
4sqlem11.5 |
|- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
| 6 |
|
4sqlem11.6 |
|- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
| 7 |
|
fzfid |
|- ( ph -> ( 0 ... ( P - 1 ) ) e. Fin ) |
| 8 |
|
elfzelz |
|- ( m e. ( 0 ... N ) -> m e. ZZ ) |
| 9 |
|
zsqcl |
|- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( m e. ( 0 ... N ) -> ( m ^ 2 ) e. ZZ ) |
| 11 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 12 |
4 11
|
syl |
|- ( ph -> P e. NN ) |
| 13 |
|
zmodfz |
|- ( ( ( m ^ 2 ) e. ZZ /\ P e. NN ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 14 |
10 12 13
|
syl2anr |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 15 |
|
eleq1a |
|- ( ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
| 16 |
14 15
|
syl |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
| 17 |
16
|
rexlimdva |
|- ( ph -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
| 18 |
17
|
abssdv |
|- ( ph -> { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } C_ ( 0 ... ( P - 1 ) ) ) |
| 19 |
5 18
|
eqsstrid |
|- ( ph -> A C_ ( 0 ... ( P - 1 ) ) ) |
| 20 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 21 |
4 20
|
syl |
|- ( ph -> P e. ZZ ) |
| 22 |
|
peano2zm |
|- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( P - 1 ) e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( ph -> ( P - 1 ) e. CC ) |
| 25 |
24
|
addlidd |
|- ( ph -> ( 0 + ( P - 1 ) ) = ( P - 1 ) ) |
| 26 |
25
|
oveq1d |
|- ( ph -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
| 28 |
19
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. ( 0 ... ( P - 1 ) ) ) |
| 29 |
|
fzrev3i |
|- ( v e. ( 0 ... ( P - 1 ) ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
| 31 |
27 30
|
eqeltrrd |
|- ( ( ph /\ v e. A ) -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
| 32 |
31 6
|
fmptd |
|- ( ph -> F : A --> ( 0 ... ( P - 1 ) ) ) |
| 33 |
32
|
frnd |
|- ( ph -> ran F C_ ( 0 ... ( P - 1 ) ) ) |
| 34 |
19 33
|
unssd |
|- ( ph -> ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) ) |
| 35 |
7 34
|
ssfid |
|- ( ph -> ( A u. ran F ) e. Fin ) |
| 36 |
|
hashcl |
|- ( ( A u. ran F ) e. Fin -> ( # ` ( A u. ran F ) ) e. NN0 ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( # ` ( A u. ran F ) ) e. NN0 ) |
| 38 |
37
|
nn0red |
|- ( ph -> ( # ` ( A u. ran F ) ) e. RR ) |
| 39 |
21
|
zred |
|- ( ph -> P e. RR ) |
| 40 |
|
ssdomg |
|- ( ( 0 ... ( P - 1 ) ) e. Fin -> ( ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
| 41 |
7 34 40
|
sylc |
|- ( ph -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) |
| 42 |
|
hashdom |
|- ( ( ( A u. ran F ) e. Fin /\ ( 0 ... ( P - 1 ) ) e. Fin ) -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
| 43 |
35 7 42
|
syl2anc |
|- ( ph -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
| 44 |
41 43
|
mpbird |
|- ( ph -> ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) ) |
| 45 |
|
fz01en |
|- ( P e. ZZ -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
| 46 |
21 45
|
syl |
|- ( ph -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
| 47 |
|
fzfid |
|- ( ph -> ( 1 ... P ) e. Fin ) |
| 48 |
|
hashen |
|- ( ( ( 0 ... ( P - 1 ) ) e. Fin /\ ( 1 ... P ) e. Fin ) -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
| 49 |
7 47 48
|
syl2anc |
|- ( ph -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
| 50 |
46 49
|
mpbird |
|- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) ) |
| 51 |
12
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 52 |
|
hashfz1 |
|- ( P e. NN0 -> ( # ` ( 1 ... P ) ) = P ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( # ` ( 1 ... P ) ) = P ) |
| 54 |
50 53
|
eqtrd |
|- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = P ) |
| 55 |
44 54
|
breqtrd |
|- ( ph -> ( # ` ( A u. ran F ) ) <_ P ) |
| 56 |
38 39 55
|
lensymd |
|- ( ph -> -. P < ( # ` ( A u. ran F ) ) ) |
| 57 |
39
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P e. RR ) |
| 58 |
57
|
ltp1d |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( P + 1 ) ) |
| 59 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 60 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 61 |
59 59 60 60
|
add4d |
|- ( ph -> ( ( N + N ) + ( 1 + 1 ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
| 62 |
3
|
oveq1d |
|- ( ph -> ( P + 1 ) = ( ( ( 2 x. N ) + 1 ) + 1 ) ) |
| 63 |
|
2cn |
|- 2 e. CC |
| 64 |
|
mulcl |
|- ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) |
| 65 |
63 59 64
|
sylancr |
|- ( ph -> ( 2 x. N ) e. CC ) |
| 66 |
65 60 60
|
addassd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) |
| 67 |
59
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
| 68 |
67
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
| 69 |
62 66 68
|
3eqtrd |
|- ( ph -> ( P + 1 ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
| 70 |
14
|
ex |
|- ( ph -> ( m e. ( 0 ... N ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) ) |
| 71 |
12
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. NN ) |
| 72 |
8
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. ZZ ) |
| 73 |
72 9
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m ^ 2 ) e. ZZ ) |
| 74 |
|
elfzelz |
|- ( u e. ( 0 ... N ) -> u e. ZZ ) |
| 75 |
74
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. ZZ ) |
| 76 |
|
zsqcl |
|- ( u e. ZZ -> ( u ^ 2 ) e. ZZ ) |
| 77 |
75 76
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u ^ 2 ) e. ZZ ) |
| 78 |
|
moddvds |
|- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( u ^ 2 ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
| 79 |
71 73 77 78
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
| 80 |
72
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. CC ) |
| 81 |
75
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. CC ) |
| 82 |
|
subsq |
|- ( ( m e. CC /\ u e. CC ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
| 83 |
80 81 82
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
| 84 |
83
|
breq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m ^ 2 ) - ( u ^ 2 ) ) <-> P || ( ( m + u ) x. ( m - u ) ) ) ) |
| 85 |
4
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. Prime ) |
| 86 |
72 75
|
zaddcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. ZZ ) |
| 87 |
72 75
|
zsubcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. ZZ ) |
| 88 |
|
euclemma |
|- ( ( P e. Prime /\ ( m + u ) e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
| 89 |
85 86 87 88
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
| 90 |
79 84 89
|
3bitrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
| 91 |
86
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. RR ) |
| 92 |
|
2re |
|- 2 e. RR |
| 93 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 94 |
|
remulcl |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) |
| 95 |
92 93 94
|
sylancr |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) e. RR ) |
| 97 |
85 20
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. ZZ ) |
| 98 |
97
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. RR ) |
| 99 |
72
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. RR ) |
| 100 |
75
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. RR ) |
| 101 |
93
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. RR ) |
| 102 |
|
elfzle2 |
|- ( m e. ( 0 ... N ) -> m <_ N ) |
| 103 |
102
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m <_ N ) |
| 104 |
|
elfzle2 |
|- ( u e. ( 0 ... N ) -> u <_ N ) |
| 105 |
104
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u <_ N ) |
| 106 |
99 100 101 101 103 105
|
le2addd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( N + N ) ) |
| 107 |
59
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. CC ) |
| 108 |
107
|
2timesd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) = ( N + N ) ) |
| 109 |
106 108
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( 2 x. N ) ) |
| 110 |
95
|
ltp1d |
|- ( ph -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) |
| 111 |
110 3
|
breqtrrd |
|- ( ph -> ( 2 x. N ) < P ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) < P ) |
| 113 |
91 96 98 109 112
|
lelttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) < P ) |
| 114 |
91 98
|
ltnled |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m + u ) < P <-> -. P <_ ( m + u ) ) ) |
| 115 |
113 114
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( m + u ) ) |
| 116 |
115
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( m + u ) ) |
| 117 |
21
|
ad2antrr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
| 118 |
86
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. ZZ ) |
| 119 |
|
1red |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 e. RR ) |
| 120 |
|
nn0abscl |
|- ( ( m - u ) e. ZZ -> ( abs ` ( m - u ) ) e. NN0 ) |
| 121 |
87 120
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. NN0 ) |
| 122 |
121
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. RR ) |
| 123 |
122
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR ) |
| 124 |
118
|
zred |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. RR ) |
| 125 |
121
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN0 ) |
| 126 |
125
|
nn0zd |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. ZZ ) |
| 127 |
87
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. CC ) |
| 128 |
127
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) e. CC ) |
| 129 |
80 81
|
subeq0ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) = 0 <-> m = u ) ) |
| 130 |
129
|
necon3bid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) =/= 0 <-> m =/= u ) ) |
| 131 |
130
|
biimpar |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) =/= 0 ) |
| 132 |
128 131
|
absrpcld |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR+ ) |
| 133 |
132
|
rpgt0d |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 0 < ( abs ` ( m - u ) ) ) |
| 134 |
|
elnnz |
|- ( ( abs ` ( m - u ) ) e. NN <-> ( ( abs ` ( m - u ) ) e. ZZ /\ 0 < ( abs ` ( m - u ) ) ) ) |
| 135 |
126 133 134
|
sylanbrc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN ) |
| 136 |
135
|
nnge1d |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( abs ` ( m - u ) ) ) |
| 137 |
|
0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 e. CC ) |
| 138 |
80 81 137
|
abs3difd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) ) |
| 139 |
80
|
subid1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - 0 ) = m ) |
| 140 |
139
|
fveq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = ( abs ` m ) ) |
| 141 |
|
elfzle1 |
|- ( m e. ( 0 ... N ) -> 0 <_ m ) |
| 142 |
141
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ m ) |
| 143 |
99 142
|
absidd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` m ) = m ) |
| 144 |
140 143
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = m ) |
| 145 |
|
0cn |
|- 0 e. CC |
| 146 |
|
abssub |
|- ( ( 0 e. CC /\ u e. CC ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
| 147 |
145 81 146
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
| 148 |
81
|
subid1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u - 0 ) = u ) |
| 149 |
148
|
fveq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( u - 0 ) ) = ( abs ` u ) ) |
| 150 |
|
elfzle1 |
|- ( u e. ( 0 ... N ) -> 0 <_ u ) |
| 151 |
150
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ u ) |
| 152 |
100 151
|
absidd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` u ) = u ) |
| 153 |
147 149 152
|
3eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = u ) |
| 154 |
144 153
|
oveq12d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) = ( m + u ) ) |
| 155 |
138 154
|
breqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
| 156 |
155
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
| 157 |
119 123 124 136 156
|
letrd |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( m + u ) ) |
| 158 |
|
elnnz1 |
|- ( ( m + u ) e. NN <-> ( ( m + u ) e. ZZ /\ 1 <_ ( m + u ) ) ) |
| 159 |
118 157 158
|
sylanbrc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. NN ) |
| 160 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( m + u ) e. NN ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
| 161 |
117 159 160
|
syl2anc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
| 162 |
116 161
|
mtod |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( m + u ) ) |
| 163 |
162
|
ex |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( m + u ) ) ) |
| 164 |
163
|
necon4ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m + u ) -> m = u ) ) |
| 165 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
| 166 |
97 87 165
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
| 167 |
|
letr |
|- ( ( P e. RR /\ ( abs ` ( m - u ) ) e. RR /\ ( m + u ) e. RR ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
| 168 |
98 122 91 167
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
| 169 |
155 168
|
mpan2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P <_ ( abs ` ( m - u ) ) -> P <_ ( m + u ) ) ) |
| 170 |
115 169
|
mtod |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( abs ` ( m - u ) ) ) |
| 171 |
170
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( abs ` ( m - u ) ) ) |
| 172 |
97
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
| 173 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( abs ` ( m - u ) ) e. NN ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
| 174 |
172 135 173
|
syl2anc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
| 175 |
171 174
|
mtod |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( abs ` ( m - u ) ) ) |
| 176 |
175
|
ex |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( abs ` ( m - u ) ) ) ) |
| 177 |
176
|
necon4ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( abs ` ( m - u ) ) -> m = u ) ) |
| 178 |
166 177
|
sylbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) -> m = u ) ) |
| 179 |
164 178
|
jaod |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P || ( m + u ) \/ P || ( m - u ) ) -> m = u ) ) |
| 180 |
90 179
|
sylbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) -> m = u ) ) |
| 181 |
|
oveq1 |
|- ( m = u -> ( m ^ 2 ) = ( u ^ 2 ) ) |
| 182 |
181
|
oveq1d |
|- ( m = u -> ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) ) |
| 183 |
180 182
|
impbid1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) |
| 184 |
183
|
ex |
|- ( ph -> ( ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) ) |
| 185 |
70 184
|
dom2lem |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 186 |
|
f1f1orn |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
| 187 |
185 186
|
syl |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
| 188 |
|
eqid |
|- ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
| 189 |
188
|
rnmpt |
|- ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
| 190 |
5 189
|
eqtr4i |
|- A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
| 191 |
|
f1oeq3 |
|- ( A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) -> ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) ) |
| 192 |
190 191
|
ax-mp |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
| 193 |
187 192
|
sylibr |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A ) |
| 194 |
|
ovex |
|- ( 0 ... N ) e. _V |
| 195 |
194
|
f1oen |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A -> ( 0 ... N ) ~~ A ) |
| 196 |
193 195
|
syl |
|- ( ph -> ( 0 ... N ) ~~ A ) |
| 197 |
196
|
ensymd |
|- ( ph -> A ~~ ( 0 ... N ) ) |
| 198 |
|
ax-1cn |
|- 1 e. CC |
| 199 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
| 200 |
59 198 199
|
sylancl |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 201 |
200
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 202 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 203 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 204 |
202 203
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 205 |
204
|
nn0zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 206 |
|
fz01en |
|- ( ( N + 1 ) e. ZZ -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
| 207 |
205 206
|
syl |
|- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
| 208 |
201 207
|
eqbrtrrd |
|- ( ph -> ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) |
| 209 |
|
entr |
|- ( ( A ~~ ( 0 ... N ) /\ ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) -> A ~~ ( 1 ... ( N + 1 ) ) ) |
| 210 |
197 208 209
|
syl2anc |
|- ( ph -> A ~~ ( 1 ... ( N + 1 ) ) ) |
| 211 |
7 19
|
ssfid |
|- ( ph -> A e. Fin ) |
| 212 |
|
fzfid |
|- ( ph -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 213 |
|
hashen |
|- ( ( A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
| 214 |
211 212 213
|
syl2anc |
|- ( ph -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
| 215 |
210 214
|
mpbird |
|- ( ph -> ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) ) |
| 216 |
|
hashfz1 |
|- ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 217 |
204 216
|
syl |
|- ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 218 |
215 217
|
eqtrd |
|- ( ph -> ( # ` A ) = ( N + 1 ) ) |
| 219 |
31
|
ex |
|- ( ph -> ( v e. A -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) ) |
| 220 |
24
|
adantr |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( P - 1 ) e. CC ) |
| 221 |
|
fzssuz |
|- ( 0 ... ( P - 1 ) ) C_ ( ZZ>= ` 0 ) |
| 222 |
|
uzssz |
|- ( ZZ>= ` 0 ) C_ ZZ |
| 223 |
|
zsscn |
|- ZZ C_ CC |
| 224 |
222 223
|
sstri |
|- ( ZZ>= ` 0 ) C_ CC |
| 225 |
221 224
|
sstri |
|- ( 0 ... ( P - 1 ) ) C_ CC |
| 226 |
19 225
|
sstrdi |
|- ( ph -> A C_ CC ) |
| 227 |
226
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. CC ) |
| 228 |
227
|
adantrr |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> v e. CC ) |
| 229 |
226
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. CC ) |
| 230 |
229
|
adantrl |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> k e. CC ) |
| 231 |
220 228 230
|
subcanad |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) |
| 232 |
231
|
ex |
|- ( ph -> ( ( v e. A /\ k e. A ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) ) |
| 233 |
219 232
|
dom2lem |
|- ( ph -> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 234 |
|
f1eq1 |
|- ( F = ( v e. A |-> ( ( P - 1 ) - v ) ) -> ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) ) |
| 235 |
6 234
|
ax-mp |
|- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 236 |
233 235
|
sylibr |
|- ( ph -> F : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 237 |
|
f1f1orn |
|- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) -> F : A -1-1-onto-> ran F ) |
| 238 |
236 237
|
syl |
|- ( ph -> F : A -1-1-onto-> ran F ) |
| 239 |
211 238
|
hasheqf1od |
|- ( ph -> ( # ` A ) = ( # ` ran F ) ) |
| 240 |
239 218
|
eqtr3d |
|- ( ph -> ( # ` ran F ) = ( N + 1 ) ) |
| 241 |
218 240
|
oveq12d |
|- ( ph -> ( ( # ` A ) + ( # ` ran F ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
| 242 |
61 69 241
|
3eqtr4d |
|- ( ph -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 243 |
242
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 244 |
211
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> A e. Fin ) |
| 245 |
7 33
|
ssfid |
|- ( ph -> ran F e. Fin ) |
| 246 |
245
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ran F e. Fin ) |
| 247 |
|
simpr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( A i^i ran F ) = (/) ) |
| 248 |
|
hashun |
|- ( ( A e. Fin /\ ran F e. Fin /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 249 |
244 246 247 248
|
syl3anc |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 250 |
243 249
|
eqtr4d |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( # ` ( A u. ran F ) ) ) |
| 251 |
58 250
|
breqtrd |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( # ` ( A u. ran F ) ) ) |
| 252 |
251
|
ex |
|- ( ph -> ( ( A i^i ran F ) = (/) -> P < ( # ` ( A u. ran F ) ) ) ) |
| 253 |
252
|
necon3bd |
|- ( ph -> ( -. P < ( # ` ( A u. ran F ) ) -> ( A i^i ran F ) =/= (/) ) ) |
| 254 |
56 253
|
mpd |
|- ( ph -> ( A i^i ran F ) =/= (/) ) |