| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvtriv.a |
|
| 2 |
|
abvtriv.b |
|
| 3 |
|
abvtriv.z |
|
| 4 |
|
abvtriv.f |
|
| 5 |
|
abvtrivd.1 |
|
| 6 |
|
abvtrivd.2 |
|
| 7 |
|
abvtrivd.3 |
|
| 8 |
1
|
a1i |
|
| 9 |
2
|
a1i |
|
| 10 |
|
eqidd |
|
| 11 |
5
|
a1i |
|
| 12 |
3
|
a1i |
|
| 13 |
|
0re |
|
| 14 |
|
1re |
|
| 15 |
13 14
|
ifcli |
|
| 16 |
15
|
a1i |
|
| 17 |
16 4
|
fmptd |
|
| 18 |
2 3
|
ring0cl |
|
| 19 |
|
iftrue |
|
| 20 |
|
c0ex |
|
| 21 |
19 4 20
|
fvmpt |
|
| 22 |
6 18 21
|
3syl |
|
| 23 |
|
0lt1 |
|
| 24 |
|
eqeq1 |
|
| 25 |
24
|
ifbid |
|
| 26 |
|
1ex |
|
| 27 |
20 26
|
ifex |
|
| 28 |
25 4 27
|
fvmpt |
|
| 29 |
|
ifnefalse |
|
| 30 |
28 29
|
sylan9eq |
|
| 31 |
30
|
3adant1 |
|
| 32 |
23 31
|
breqtrrid |
|
| 33 |
|
1t1e1 |
|
| 34 |
33
|
eqcomi |
|
| 35 |
6
|
3ad2ant1 |
|
| 36 |
|
simp2l |
|
| 37 |
|
simp3l |
|
| 38 |
2 5
|
ringcl |
|
| 39 |
35 36 37 38
|
syl3anc |
|
| 40 |
|
eqeq1 |
|
| 41 |
40
|
ifbid |
|
| 42 |
20 26
|
ifex |
|
| 43 |
41 4 42
|
fvmpt |
|
| 44 |
39 43
|
syl |
|
| 45 |
7
|
neneqd |
|
| 46 |
45
|
iffalsed |
|
| 47 |
44 46
|
eqtrd |
|
| 48 |
36 28
|
syl |
|
| 49 |
|
simp2r |
|
| 50 |
49
|
neneqd |
|
| 51 |
50
|
iffalsed |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
|
eqeq1 |
|
| 54 |
53
|
ifbid |
|
| 55 |
20 26
|
ifex |
|
| 56 |
54 4 55
|
fvmpt |
|
| 57 |
37 56
|
syl |
|
| 58 |
|
simp3r |
|
| 59 |
58
|
neneqd |
|
| 60 |
59
|
iffalsed |
|
| 61 |
57 60
|
eqtrd |
|
| 62 |
52 61
|
oveq12d |
|
| 63 |
34 47 62
|
3eqtr4a |
|
| 64 |
|
breq1 |
|
| 65 |
|
breq1 |
|
| 66 |
|
0le2 |
|
| 67 |
|
1le2 |
|
| 68 |
64 65 66 67
|
keephyp |
|
| 69 |
|
df-2 |
|
| 70 |
68 69
|
breqtri |
|
| 71 |
70
|
a1i |
|
| 72 |
|
ringgrp |
|
| 73 |
6 72
|
syl |
|
| 74 |
73
|
3ad2ant1 |
|
| 75 |
|
eqid |
|
| 76 |
2 75
|
grpcl |
|
| 77 |
74 36 37 76
|
syl3anc |
|
| 78 |
|
eqeq1 |
|
| 79 |
78
|
ifbid |
|
| 80 |
20 26
|
ifex |
|
| 81 |
79 4 80
|
fvmpt |
|
| 82 |
77 81
|
syl |
|
| 83 |
52 61
|
oveq12d |
|
| 84 |
71 82 83
|
3brtr4d |
|
| 85 |
8 9 10 11 12 6 17 22 32 63 84
|
isabvd |
|