Metamath Proof Explorer


Theorem abvtrivd

Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a A=AbsValR
abvtriv.b B=BaseR
abvtriv.z 0˙=0R
abvtriv.f F=xBifx=0˙01
abvtrivd.1 ·˙=R
abvtrivd.2 φRRing
abvtrivd.3 φyBy0˙zBz0˙y·˙z0˙
Assertion abvtrivd φFA

Proof

Step Hyp Ref Expression
1 abvtriv.a A=AbsValR
2 abvtriv.b B=BaseR
3 abvtriv.z 0˙=0R
4 abvtriv.f F=xBifx=0˙01
5 abvtrivd.1 ·˙=R
6 abvtrivd.2 φRRing
7 abvtrivd.3 φyBy0˙zBz0˙y·˙z0˙
8 1 a1i φA=AbsValR
9 2 a1i φB=BaseR
10 eqidd φ+R=+R
11 5 a1i φ·˙=R
12 3 a1i φ0˙=0R
13 0re 0
14 1re 1
15 13 14 ifcli ifx=0˙01
16 15 a1i φxBifx=0˙01
17 16 4 fmptd φF:B
18 2 3 ring0cl RRing0˙B
19 iftrue x=0˙ifx=0˙01=0
20 c0ex 0V
21 19 4 20 fvmpt 0˙BF0˙=0
22 6 18 21 3syl φF0˙=0
23 0lt1 0<1
24 eqeq1 x=yx=0˙y=0˙
25 24 ifbid x=yifx=0˙01=ify=0˙01
26 1ex 1V
27 20 26 ifex ify=0˙01V
28 25 4 27 fvmpt yBFy=ify=0˙01
29 ifnefalse y0˙ify=0˙01=1
30 28 29 sylan9eq yBy0˙Fy=1
31 30 3adant1 φyBy0˙Fy=1
32 23 31 breqtrrid φyBy0˙0<Fy
33 1t1e1 11=1
34 33 eqcomi 1=11
35 6 3ad2ant1 φyBy0˙zBz0˙RRing
36 simp2l φyBy0˙zBz0˙yB
37 simp3l φyBy0˙zBz0˙zB
38 2 5 ringcl RRingyBzBy·˙zB
39 35 36 37 38 syl3anc φyBy0˙zBz0˙y·˙zB
40 eqeq1 x=y·˙zx=0˙y·˙z=0˙
41 40 ifbid x=y·˙zifx=0˙01=ify·˙z=0˙01
42 20 26 ifex ify·˙z=0˙01V
43 41 4 42 fvmpt y·˙zBFy·˙z=ify·˙z=0˙01
44 39 43 syl φyBy0˙zBz0˙Fy·˙z=ify·˙z=0˙01
45 7 neneqd φyBy0˙zBz0˙¬y·˙z=0˙
46 45 iffalsed φyBy0˙zBz0˙ify·˙z=0˙01=1
47 44 46 eqtrd φyBy0˙zBz0˙Fy·˙z=1
48 36 28 syl φyBy0˙zBz0˙Fy=ify=0˙01
49 simp2r φyBy0˙zBz0˙y0˙
50 49 neneqd φyBy0˙zBz0˙¬y=0˙
51 50 iffalsed φyBy0˙zBz0˙ify=0˙01=1
52 48 51 eqtrd φyBy0˙zBz0˙Fy=1
53 eqeq1 x=zx=0˙z=0˙
54 53 ifbid x=zifx=0˙01=ifz=0˙01
55 20 26 ifex ifz=0˙01V
56 54 4 55 fvmpt zBFz=ifz=0˙01
57 37 56 syl φyBy0˙zBz0˙Fz=ifz=0˙01
58 simp3r φyBy0˙zBz0˙z0˙
59 58 neneqd φyBy0˙zBz0˙¬z=0˙
60 59 iffalsed φyBy0˙zBz0˙ifz=0˙01=1
61 57 60 eqtrd φyBy0˙zBz0˙Fz=1
62 52 61 oveq12d φyBy0˙zBz0˙FyFz=11
63 34 47 62 3eqtr4a φyBy0˙zBz0˙Fy·˙z=FyFz
64 breq1 0=ify+Rz=0˙0102ify+Rz=0˙012
65 breq1 1=ify+Rz=0˙0112ify+Rz=0˙012
66 0le2 02
67 1le2 12
68 64 65 66 67 keephyp ify+Rz=0˙012
69 df-2 2=1+1
70 68 69 breqtri ify+Rz=0˙011+1
71 70 a1i φyBy0˙zBz0˙ify+Rz=0˙011+1
72 ringgrp RRingRGrp
73 6 72 syl φRGrp
74 73 3ad2ant1 φyBy0˙zBz0˙RGrp
75 eqid +R=+R
76 2 75 grpcl RGrpyBzBy+RzB
77 74 36 37 76 syl3anc φyBy0˙zBz0˙y+RzB
78 eqeq1 x=y+Rzx=0˙y+Rz=0˙
79 78 ifbid x=y+Rzifx=0˙01=ify+Rz=0˙01
80 20 26 ifex ify+Rz=0˙01V
81 79 4 80 fvmpt y+RzBFy+Rz=ify+Rz=0˙01
82 77 81 syl φyBy0˙zBz0˙Fy+Rz=ify+Rz=0˙01
83 52 61 oveq12d φyBy0˙zBz0˙Fy+Fz=1+1
84 71 82 83 3brtr4d φyBy0˙zBz0˙Fy+RzFy+Fz
85 8 9 10 11 12 6 17 22 32 63 84 isabvd φFA