Metamath Proof Explorer


Theorem ac5num

Description: A version of ac5b with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion ac5num Adomcard¬Aff:AAxAfxx

Proof

Step Hyp Ref Expression
1 uniexr AdomcardAV
2 dfac8b AdomcardrrWeA
3 dfac8c AVrrWeAgxAxgxx
4 1 2 3 sylc AdomcardgxAxgxx
5 4 adantr Adomcard¬AgxAxgxx
6 1 ad2antrr Adomcard¬AxAxgxxAV
7 6 mptexd Adomcard¬AxAxgxxyAgyV
8 nelne2 xA¬Ax
9 8 ancoms ¬AxAx
10 9 adantll Adomcard¬AxAx
11 pm2.27 xxgxxgxx
12 10 11 syl Adomcard¬AxAxgxxgxx
13 12 ralimdva Adomcard¬AxAxgxxxAgxx
14 13 imp Adomcard¬AxAxgxxxAgxx
15 fveq2 x=ygx=gy
16 id x=yx=y
17 15 16 eleq12d x=ygxxgyy
18 17 rspccva xAgxxyAgyy
19 14 18 sylan Adomcard¬AxAxgxxyAgyy
20 elunii gyyyAgyA
21 19 20 sylancom Adomcard¬AxAxgxxyAgyA
22 21 fmpttd Adomcard¬AxAxgxxyAgy:AA
23 fveq2 y=xgy=gx
24 eqid yAgy=yAgy
25 fvex gxV
26 23 24 25 fvmpt xAyAgyx=gx
27 26 eleq1d xAyAgyxxgxx
28 27 ralbiia xAyAgyxxxAgxx
29 14 28 sylibr Adomcard¬AxAxgxxxAyAgyxx
30 22 29 jca Adomcard¬AxAxgxxyAgy:AAxAyAgyxx
31 feq1 f=yAgyf:AAyAgy:AA
32 fveq1 f=yAgyfx=yAgyx
33 32 eleq1d f=yAgyfxxyAgyxx
34 33 ralbidv f=yAgyxAfxxxAyAgyxx
35 31 34 anbi12d f=yAgyf:AAxAfxxyAgy:AAxAyAgyxx
36 7 30 35 spcedv Adomcard¬AxAxgxxff:AAxAfxx
37 5 36 exlimddv Adomcard¬Aff:AAxAfxx