Description: A version of ac5b with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ac5num | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexr | |
|
2 | dfac8b | |
|
3 | dfac8c | |
|
4 | 1 2 3 | sylc | |
5 | 4 | adantr | |
6 | 1 | ad2antrr | |
7 | 6 | mptexd | |
8 | nelne2 | |
|
9 | 8 | ancoms | |
10 | 9 | adantll | |
11 | pm2.27 | |
|
12 | 10 11 | syl | |
13 | 12 | ralimdva | |
14 | 13 | imp | |
15 | fveq2 | |
|
16 | id | |
|
17 | 15 16 | eleq12d | |
18 | 17 | rspccva | |
19 | 14 18 | sylan | |
20 | elunii | |
|
21 | 19 20 | sylancom | |
22 | 21 | fmpttd | |
23 | fveq2 | |
|
24 | eqid | |
|
25 | fvex | |
|
26 | 23 24 25 | fvmpt | |
27 | 26 | eleq1d | |
28 | 27 | ralbiia | |
29 | 14 28 | sylibr | |
30 | 22 29 | jca | |
31 | feq1 | |
|
32 | fveq1 | |
|
33 | 32 | eleq1d | |
34 | 33 | ralbidv | |
35 | 31 34 | anbi12d | |
36 | 7 30 35 | spcedv | |
37 | 5 36 | exlimddv | |