Metamath Proof Explorer


Theorem aceq3lem

Description: Lemma for dfac3 . (Contributed by NM, 2-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis aceq3lem.1 F=wdomyfu|wyu
Assertion aceq3lem xfzxzfzzffyfFndomy

Proof

Step Hyp Ref Expression
1 aceq3lem.1 F=wdomyfu|wyu
2 vex yV
3 2 rnex ranyV
4 3 pwex 𝒫ranyV
5 raleq x=𝒫ranyzxzfzzz𝒫ranyzfzz
6 5 exbidv x=𝒫ranyfzxzfzzfz𝒫ranyzfzz
7 4 6 spcv xfzxzfzzfz𝒫ranyzfzz
8 df-mpt wdomyfu|wyu=wh|wdomyh=fu|wyu
9 1 8 eqtri F=wh|wdomyh=fu|wyu
10 vex wV
11 10 eldm wdomyuwyu
12 abn0 u|wyuuwyu
13 11 12 bitr4i wdomyu|wyu
14 vex uV
15 10 14 brelrn wyuurany
16 15 abssi u|wyurany
17 3 16 elpwi2 u|wyu𝒫rany
18 neeq1 z=u|wyuzu|wyu
19 fveq2 z=u|wyufz=fu|wyu
20 id z=u|wyuz=u|wyu
21 19 20 eleq12d z=u|wyufzzfu|wyuu|wyu
22 18 21 imbi12d z=u|wyuzfzzu|wyufu|wyuu|wyu
23 22 rspcv u|wyu𝒫ranyz𝒫ranyzfzzu|wyufu|wyuu|wyu
24 17 23 ax-mp z𝒫ranyzfzzu|wyufu|wyuu|wyu
25 13 24 biimtrid z𝒫ranyzfzzwdomyfu|wyuu|wyu
26 25 imp z𝒫ranyzfzzwdomyfu|wyuu|wyu
27 fvex fu|wyuV
28 breq2 z=fu|wyuwyzwyfu|wyu
29 breq2 u=zwyuwyz
30 29 cbvabv u|wyu=z|wyz
31 27 28 30 elab2 fu|wyuu|wyuwyfu|wyu
32 26 31 sylib z𝒫ranyzfzzwdomywyfu|wyu
33 breq2 h=fu|wyuwyhwyfu|wyu
34 32 33 syl5ibrcom z𝒫ranyzfzzwdomyh=fu|wyuwyh
35 34 expimpd z𝒫ranyzfzzwdomyh=fu|wyuwyh
36 35 ssopab2dv z𝒫ranyzfzzwh|wdomyh=fu|wyuwh|wyh
37 opabss wh|wyhy
38 36 37 sstrdi z𝒫ranyzfzzwh|wdomyh=fu|wyuy
39 9 38 eqsstrid z𝒫ranyzfzzFy
40 27 1 fnmpti FFndomy
41 2 ssex FyFV
42 41 adantr FyFFndomyFV
43 sseq1 g=FgyFy
44 fneq1 g=FgFndomyFFndomy
45 43 44 anbi12d g=FgygFndomyFyFFndomy
46 45 spcegv FVFyFFndomyggygFndomy
47 42 46 mpcom FyFFndomyggygFndomy
48 39 40 47 sylancl z𝒫ranyzfzzggygFndomy
49 48 exlimiv fz𝒫ranyzfzzggygFndomy
50 7 49 syl xfzxzfzzggygFndomy
51 sseq1 g=fgyfy
52 fneq1 g=fgFndomyfFndomy
53 51 52 anbi12d g=fgygFndomyfyfFndomy
54 53 cbvexvw ggygFndomyffyfFndomy
55 50 54 sylib xfzxzfzzffyfFndomy