Metamath Proof Explorer


Theorem acoscos

Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acoscos AA0πarccoscosA=A

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 1 adantr AA0πcosA
3 acosval cosAarccoscosA=π2arcsincosA
4 2 3 syl AA0πarccoscosA=π2arcsincosA
5 picn π
6 halfcl ππ2
7 5 6 ax-mp π2
8 simpl AA0πA
9 nncan π2Aπ2π2A=A
10 7 8 9 sylancr AA0ππ2π2A=A
11 10 fveq2d AA0πcosπ2π2A=cosA
12 subcl π2Aπ2A
13 7 8 12 sylancr AA0ππ2A
14 coshalfpim π2Acosπ2π2A=sinπ2A
15 13 14 syl AA0πcosπ2π2A=sinπ2A
16 11 15 eqtr3d AA0πcosA=sinπ2A
17 16 fveq2d AA0πarcsincosA=arcsinsinπ2A
18 halfpire π2
19 18 recni π2
20 resub π2Aπ2A=π2A
21 19 8 20 sylancr AA0ππ2A=π2A
22 rere π2π2=π2
23 18 22 ax-mp π2=π2
24 23 oveq1i π2A=π2A
25 21 24 eqtrdi AA0ππ2A=π2A
26 recl AA
27 26 adantr AA0πA
28 resubcl π2Aπ2A
29 18 27 28 sylancr AA0ππ2A
30 18 a1i AA0ππ2
31 neghalfpire π2
32 31 a1i AA0ππ2
33 eliooord A0π0<AA<π
34 33 adantl AA0π0<AA<π
35 34 simprd AA0πA<π
36 19 19 subnegi π2π2=π2+π2
37 pidiv2halves π2+π2=π
38 36 37 eqtri π2π2=π
39 35 38 breqtrrdi AA0πA<π2π2
40 27 30 32 39 ltsub13d AA0ππ2<π2A
41 34 simpld AA0π0<A
42 ltsubpos Aπ20<Aπ2A<π2
43 27 18 42 sylancl AA0π0<Aπ2A<π2
44 41 43 mpbid AA0ππ2A<π2
45 31 rexri π2*
46 18 rexri π2*
47 elioo2 π2*π2*π2Aπ2π2π2Aπ2<π2Aπ2A<π2
48 45 46 47 mp2an π2Aπ2π2π2Aπ2<π2Aπ2A<π2
49 29 40 44 48 syl3anbrc AA0ππ2Aπ2π2
50 25 49 eqeltrd AA0ππ2Aπ2π2
51 asinsin π2Aπ2Aπ2π2arcsinsinπ2A=π2A
52 13 50 51 syl2anc AA0πarcsinsinπ2A=π2A
53 17 52 eqtr2d AA0ππ2A=arcsincosA
54 asincl cosAarcsincosA
55 2 54 syl AA0πarcsincosA
56 subsub23 π2AarcsincosAπ2A=arcsincosAπ2arcsincosA=A
57 19 8 55 56 mp3an2i AA0ππ2A=arcsincosAπ2arcsincosA=A
58 53 57 mpbid AA0ππ2arcsincosA=A
59 4 58 eqtrd AA0πarccoscosA=A