Metamath Proof Explorer


Theorem arisum

Description: Arithmetic series sum of the first N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion arisum N0k=1Nk=N2+N2

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 1zzd N1
3 nnz NN
4 elfzelz k1Nk
5 4 zcnd k1Nk
6 5 adantl Nk1Nk
7 id k=j+1k=j+1
8 2 2 3 6 7 fsumshftm Nk=1Nk=j=11N1j+1
9 1m1e0 11=0
10 9 oveq1i 11N1=0N1
11 10 sumeq1i j=11N1j+1=j=0N1j+1
12 8 11 eqtrdi Nk=1Nk=j=0N1j+1
13 elfznn0 j0N1j0
14 13 adantl Nj0N1j0
15 bcnp1n j0(j+1j)=j+1
16 14 15 syl Nj0N1(j+1j)=j+1
17 14 nn0cnd Nj0N1j
18 ax-1cn 1
19 addcom j1j+1=1+j
20 17 18 19 sylancl Nj0N1j+1=1+j
21 20 oveq1d Nj0N1(j+1j)=(1+jj)
22 16 21 eqtr3d Nj0N1j+1=(1+jj)
23 22 sumeq2dv Nj=0N1j+1=j=0N1(1+jj)
24 1nn0 10
25 nnm1nn0 NN10
26 bcxmas 10N10(1+1+N1N1)=j=0N1(1+jj)
27 24 25 26 sylancr N(1+1+N1N1)=j=0N1(1+jj)
28 23 27 eqtr4d Nj=0N1j+1=(1+1+N1N1)
29 1cnd N1
30 nncn NN
31 29 29 30 ppncand N1+1+N1=1+N
32 29 30 31 comraddd N1+1+N1=N+1
33 32 oveq1d N(1+1+N1N1)=(N+1N1)
34 nnnn0 NN0
35 bcp1m1 N0(N+1N1)=N+1 N2
36 34 35 syl N(N+1N1)=N+1 N2
37 sqval NN2= N N
38 37 eqcomd N N N=N2
39 mullid N1 N=N
40 38 39 oveq12d N N N+1 N=N2+N
41 30 40 syl N N N+1 N=N2+N
42 30 30 29 41 joinlmuladdmuld NN+1 N=N2+N
43 42 oveq1d NN+1 N2=N2+N2
44 33 36 43 3eqtrd N(1+1+N1N1)=N2+N2
45 12 28 44 3eqtrd Nk=1Nk=N2+N2
46 oveq2 N=01N=10
47 fz10 10=
48 46 47 eqtrdi N=01N=
49 48 sumeq1d N=0k=1Nk=kk
50 sum0 kk=0
51 49 50 eqtrdi N=0k=1Nk=0
52 sq0i N=0N2=0
53 id N=0N=0
54 52 53 oveq12d N=0N2+N=0+0
55 00id 0+0=0
56 54 55 eqtrdi N=0N2+N=0
57 56 oveq1d N=0N2+N2=02
58 2cn 2
59 2ne0 20
60 58 59 div0i 02=0
61 57 60 eqtrdi N=0N2+N2=0
62 51 61 eqtr4d N=0k=1Nk=N2+N2
63 45 62 jaoi NN=0k=1Nk=N2+N2
64 1 63 sylbi N0k=1Nk=N2+N2