Description: Arithmetic series sum of the first N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | arisum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | 1zzd | |
|
3 | nnz | |
|
4 | elfzelz | |
|
5 | 4 | zcnd | |
6 | 5 | adantl | |
7 | id | |
|
8 | 2 2 3 6 7 | fsumshftm | |
9 | 1m1e0 | |
|
10 | 9 | oveq1i | |
11 | 10 | sumeq1i | |
12 | 8 11 | eqtrdi | |
13 | elfznn0 | |
|
14 | 13 | adantl | |
15 | bcnp1n | |
|
16 | 14 15 | syl | |
17 | 14 | nn0cnd | |
18 | ax-1cn | |
|
19 | addcom | |
|
20 | 17 18 19 | sylancl | |
21 | 20 | oveq1d | |
22 | 16 21 | eqtr3d | |
23 | 22 | sumeq2dv | |
24 | 1nn0 | |
|
25 | nnm1nn0 | |
|
26 | bcxmas | |
|
27 | 24 25 26 | sylancr | |
28 | 23 27 | eqtr4d | |
29 | 1cnd | |
|
30 | nncn | |
|
31 | 29 29 30 | ppncand | |
32 | 29 30 31 | comraddd | |
33 | 32 | oveq1d | |
34 | nnnn0 | |
|
35 | bcp1m1 | |
|
36 | 34 35 | syl | |
37 | sqval | |
|
38 | 37 | eqcomd | |
39 | mullid | |
|
40 | 38 39 | oveq12d | |
41 | 30 40 | syl | |
42 | 30 30 29 41 | joinlmuladdmuld | |
43 | 42 | oveq1d | |
44 | 33 36 43 | 3eqtrd | |
45 | 12 28 44 | 3eqtrd | |
46 | oveq2 | |
|
47 | fz10 | |
|
48 | 46 47 | eqtrdi | |
49 | 48 | sumeq1d | |
50 | sum0 | |
|
51 | 49 50 | eqtrdi | |
52 | sq0i | |
|
53 | id | |
|
54 | 52 53 | oveq12d | |
55 | 00id | |
|
56 | 54 55 | eqtrdi | |
57 | 56 | oveq1d | |
58 | 2cn | |
|
59 | 2ne0 | |
|
60 | 58 59 | div0i | |
61 | 57 60 | eqtrdi | |
62 | 51 61 | eqtr4d | |
63 | 45 62 | jaoi | |
64 | 1 63 | sylbi | |