| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|
| 2 |
|
nnm1nn0 |
|
| 3 |
|
nn0uz |
|
| 4 |
2 3
|
eleqtrdi |
|
| 5 |
|
elfznn0 |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
nn0cnd |
|
| 8 |
|
id |
|
| 9 |
4 7 8
|
fsum1p |
|
| 10 |
|
1e0p1 |
|
| 11 |
10
|
oveq1i |
|
| 12 |
11
|
sumeq1i |
|
| 13 |
12
|
oveq2i |
|
| 14 |
|
fzfid |
|
| 15 |
|
elfznn |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
nncnd |
|
| 18 |
14 17
|
fsumcl |
|
| 19 |
18
|
addlidd |
|
| 20 |
13 19
|
eqtr3id |
|
| 21 |
|
arisum |
|
| 22 |
2 21
|
syl |
|
| 23 |
|
nncn |
|
| 24 |
23
|
2timesd |
|
| 25 |
24
|
oveq2d |
|
| 26 |
23
|
sqcld |
|
| 27 |
26 23 23
|
subsub4d |
|
| 28 |
25 27
|
eqtr4d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
binom2sub1 |
|
| 31 |
23 30
|
syl |
|
| 32 |
26 23
|
subcld |
|
| 33 |
|
1cnd |
|
| 34 |
32 23 33
|
subsubd |
|
| 35 |
29 31 34
|
3eqtr4d |
|
| 36 |
35
|
oveq1d |
|
| 37 |
|
ax-1cn |
|
| 38 |
|
subcl |
|
| 39 |
23 37 38
|
sylancl |
|
| 40 |
32 39
|
npcand |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
41
|
oveq1d |
|
| 43 |
22 42
|
eqtrd |
|
| 44 |
20 43
|
eqtrd |
|
| 45 |
9 44
|
eqtrd |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
|
0re |
|
| 49 |
|
ltm1 |
|
| 50 |
48 49
|
ax-mp |
|
| 51 |
|
0z |
|
| 52 |
|
peano2zm |
|
| 53 |
51 52
|
ax-mp |
|
| 54 |
|
fzn |
|
| 55 |
51 53 54
|
mp2an |
|
| 56 |
50 55
|
mpbi |
|
| 57 |
47 56
|
eqtrdi |
|
| 58 |
57
|
sumeq1d |
|
| 59 |
|
sum0 |
|
| 60 |
58 59
|
eqtrdi |
|
| 61 |
|
sq0i |
|
| 62 |
|
id |
|
| 63 |
61 62
|
oveq12d |
|
| 64 |
|
0m0e0 |
|
| 65 |
63 64
|
eqtrdi |
|
| 66 |
65
|
oveq1d |
|
| 67 |
|
2cn |
|
| 68 |
|
2ne0 |
|
| 69 |
67 68
|
div0i |
|
| 70 |
66 69
|
eqtrdi |
|
| 71 |
60 70
|
eqtr4d |
|
| 72 |
45 71
|
jaoi |
|
| 73 |
1 72
|
sylbi |
|