Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2l |
|
2 |
|
fveecn |
|
3 |
1 2
|
sylancom |
|
4 |
|
simpl2r |
|
5 |
|
fveecn |
|
6 |
4 5
|
sylancom |
|
7 |
|
elicc01 |
|
8 |
7
|
simp1bi |
|
9 |
8
|
adantr |
|
10 |
9
|
3ad2ant3 |
|
11 |
10
|
recnd |
|
12 |
11
|
adantr |
|
13 |
|
fveq2 |
|
14 |
|
fveq2 |
|
15 |
14
|
oveq2d |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
15 17
|
oveq12d |
|
19 |
13 18
|
eqeq12d |
|
20 |
19
|
rspccva |
|
21 |
20
|
adantll |
|
22 |
21
|
3ad2antl3 |
|
23 |
|
oveq2 |
|
24 |
23
|
oveq1d |
|
25 |
|
subdi |
|
26 |
25
|
3coml |
|
27 |
|
ax-1cn |
|
28 |
|
subcl |
|
29 |
27 28
|
mpan |
|
30 |
29
|
adantl |
|
31 |
|
simpl |
|
32 |
|
subdir |
|
33 |
27 30 31 32
|
mp3an2i |
|
34 |
|
nncan |
|
35 |
27 34
|
mpan |
|
36 |
35
|
oveq1d |
|
37 |
36
|
adantl |
|
38 |
|
mulid2 |
|
39 |
38
|
oveq1d |
|
40 |
39
|
adantr |
|
41 |
33 37 40
|
3eqtr3rd |
|
42 |
41
|
oveq1d |
|
43 |
42
|
3adant2 |
|
44 |
|
simp1 |
|
45 |
|
mulcl |
|
46 |
29 45
|
sylan |
|
47 |
46
|
ancoms |
|
48 |
47
|
3adant2 |
|
49 |
|
mulcl |
|
50 |
49
|
ancoms |
|
51 |
50
|
3adant1 |
|
52 |
44 48 51
|
subsub4d |
|
53 |
26 43 52
|
3eqtr2rd |
|
54 |
53
|
oveq1d |
|
55 |
|
simp3 |
|
56 |
|
subcl |
|
57 |
56
|
3adant3 |
|
58 |
55 57
|
sqmuld |
|
59 |
54 58
|
eqtrd |
|
60 |
24 59
|
sylan9eqr |
|
61 |
3 6 12 22 60
|
syl31anc |
|
62 |
61
|
sumeq2dv |
|
63 |
|
fzfid |
|
64 |
8
|
resqcld |
|
65 |
64
|
recnd |
|
66 |
65
|
adantr |
|
67 |
66
|
3ad2ant3 |
|
68 |
2
|
3adant1 |
|
69 |
68
|
3adant2r |
|
70 |
5
|
3adant1 |
|
71 |
70
|
3adant2l |
|
72 |
69 71
|
subcld |
|
73 |
72
|
sqcld |
|
74 |
73
|
3expa |
|
75 |
74
|
3adantl3 |
|
76 |
63 67 75
|
fsummulc2 |
|
77 |
62 76
|
eqtr4d |
|