Metamath Proof Explorer


Theorem ax5seglem1

Description: Lemma for ax5seg . Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem1 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N A j B j 2 = T 2 j = 1 N A j C j 2

Proof

Step Hyp Ref Expression
1 simpl2l N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A 𝔼 N
2 fveecn A 𝔼 N j 1 N A j
3 1 2 sylancom N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j
4 simpl2r N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C 𝔼 N
5 fveecn C 𝔼 N j 1 N C j
6 4 5 sylancom N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C j
7 elicc01 T 0 1 T 0 T T 1
8 7 simp1bi T 0 1 T
9 8 adantr T 0 1 i 1 N B i = 1 T A i + T C i T
10 9 3ad2ant3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T
11 10 recnd N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T
12 11 adantr N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T
13 fveq2 i = j B i = B j
14 fveq2 i = j A i = A j
15 14 oveq2d i = j 1 T A i = 1 T A j
16 fveq2 i = j C i = C j
17 16 oveq2d i = j T C i = T C j
18 15 17 oveq12d i = j 1 T A i + T C i = 1 T A j + T C j
19 13 18 eqeq12d i = j B i = 1 T A i + T C i B j = 1 T A j + T C j
20 19 rspccva i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
21 20 adantll T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
22 21 3ad2antl3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
23 oveq2 B j = 1 T A j + T C j A j B j = A j 1 T A j + T C j
24 23 oveq1d B j = 1 T A j + T C j A j B j 2 = A j 1 T A j + T C j 2
25 subdi T A j C j T A j C j = T A j T C j
26 25 3coml A j C j T T A j C j = T A j T C j
27 ax-1cn 1
28 subcl 1 T 1 T
29 27 28 mpan T 1 T
30 29 adantl A j T 1 T
31 simpl A j T A j
32 subdir 1 1 T A j 1 1 T A j = 1 A j 1 T A j
33 27 30 31 32 mp3an2i A j T 1 1 T A j = 1 A j 1 T A j
34 nncan 1 T 1 1 T = T
35 27 34 mpan T 1 1 T = T
36 35 oveq1d T 1 1 T A j = T A j
37 36 adantl A j T 1 1 T A j = T A j
38 mulid2 A j 1 A j = A j
39 38 oveq1d A j 1 A j 1 T A j = A j 1 T A j
40 39 adantr A j T 1 A j 1 T A j = A j 1 T A j
41 33 37 40 3eqtr3rd A j T A j 1 T A j = T A j
42 41 oveq1d A j T A j - 1 T A j - T C j = T A j T C j
43 42 3adant2 A j C j T A j - 1 T A j - T C j = T A j T C j
44 simp1 A j C j T A j
45 mulcl 1 T A j 1 T A j
46 29 45 sylan T A j 1 T A j
47 46 ancoms A j T 1 T A j
48 47 3adant2 A j C j T 1 T A j
49 mulcl T C j T C j
50 49 ancoms C j T T C j
51 50 3adant1 A j C j T T C j
52 44 48 51 subsub4d A j C j T A j - 1 T A j - T C j = A j 1 T A j + T C j
53 26 43 52 3eqtr2rd A j C j T A j 1 T A j + T C j = T A j C j
54 53 oveq1d A j C j T A j 1 T A j + T C j 2 = T A j C j 2
55 simp3 A j C j T T
56 subcl A j C j A j C j
57 56 3adant3 A j C j T A j C j
58 55 57 sqmuld A j C j T T A j C j 2 = T 2 A j C j 2
59 54 58 eqtrd A j C j T A j 1 T A j + T C j 2 = T 2 A j C j 2
60 24 59 sylan9eqr A j C j T B j = 1 T A j + T C j A j B j 2 = T 2 A j C j 2
61 3 6 12 22 60 syl31anc N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j B j 2 = T 2 A j C j 2
62 61 sumeq2dv N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N A j B j 2 = j = 1 N T 2 A j C j 2
63 fzfid N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 N Fin
64 8 resqcld T 0 1 T 2
65 64 recnd T 0 1 T 2
66 65 adantr T 0 1 i 1 N B i = 1 T A i + T C i T 2
67 66 3ad2ant3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T 2
68 2 3adant1 N A 𝔼 N j 1 N A j
69 68 3adant2r N A 𝔼 N C 𝔼 N j 1 N A j
70 5 3adant1 N C 𝔼 N j 1 N C j
71 70 3adant2l N A 𝔼 N C 𝔼 N j 1 N C j
72 69 71 subcld N A 𝔼 N C 𝔼 N j 1 N A j C j
73 72 sqcld N A 𝔼 N C 𝔼 N j 1 N A j C j 2
74 73 3expa N A 𝔼 N C 𝔼 N j 1 N A j C j 2
75 74 3adantl3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j C j 2
76 63 67 75 fsummulc2 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T 2 j = 1 N A j C j 2 = j = 1 N T 2 A j C j 2
77 62 76 eqtr4d N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N A j B j 2 = T 2 j = 1 N A j C j 2