Metamath Proof Explorer


Theorem axaddf

Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl . This construction-dependent theorem should not be referenced directly; instead, use ax-addf . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion axaddf + : ×

Proof

Step Hyp Ref Expression
1 moeq * z z = w + 𝑹 u v + 𝑹 f
2 1 mosubop * z u f y = u f z = w + 𝑹 u v + 𝑹 f
3 2 mosubop * z w v x = w v u f y = u f z = w + 𝑹 u v + 𝑹 f
4 anass x = w v y = u f z = w + 𝑹 u v + 𝑹 f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
5 4 2exbii u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
6 19.42vv u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f x = w v u f y = u f z = w + 𝑹 u v + 𝑹 f
7 5 6 bitri u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f x = w v u f y = u f z = w + 𝑹 u v + 𝑹 f
8 7 2exbii w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f w v x = w v u f y = u f z = w + 𝑹 u v + 𝑹 f
9 8 mobii * z w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f * z w v x = w v u f y = u f z = w + 𝑹 u v + 𝑹 f
10 3 9 mpbir * z w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
11 10 moani * z x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
12 11 funoprab Fun x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
13 df-add + = x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
14 13 funeqi Fun + Fun x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
15 12 14 mpbir Fun +
16 13 dmeqi dom + = dom x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
17 dmoprabss dom x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f ×
18 16 17 eqsstri dom + ×
19 0ncn ¬
20 df-c = 𝑹 × 𝑹
21 oveq1 z w = x z w + v u = x + v u
22 21 eleq1d z w = x z w + v u 𝑹 × 𝑹 x + v u 𝑹 × 𝑹
23 oveq2 v u = y x + v u = x + y
24 23 eleq1d v u = y x + v u 𝑹 × 𝑹 x + y 𝑹 × 𝑹
25 addcnsr z 𝑹 w 𝑹 v 𝑹 u 𝑹 z w + v u = z + 𝑹 v w + 𝑹 u
26 addclsr z 𝑹 v 𝑹 z + 𝑹 v 𝑹
27 addclsr w 𝑹 u 𝑹 w + 𝑹 u 𝑹
28 26 27 anim12i z 𝑹 v 𝑹 w 𝑹 u 𝑹 z + 𝑹 v 𝑹 w + 𝑹 u 𝑹
29 28 an4s z 𝑹 w 𝑹 v 𝑹 u 𝑹 z + 𝑹 v 𝑹 w + 𝑹 u 𝑹
30 opelxpi z + 𝑹 v 𝑹 w + 𝑹 u 𝑹 z + 𝑹 v w + 𝑹 u 𝑹 × 𝑹
31 29 30 syl z 𝑹 w 𝑹 v 𝑹 u 𝑹 z + 𝑹 v w + 𝑹 u 𝑹 × 𝑹
32 25 31 eqeltrd z 𝑹 w 𝑹 v 𝑹 u 𝑹 z w + v u 𝑹 × 𝑹
33 20 22 24 32 2optocl x y x + y 𝑹 × 𝑹
34 33 20 eleqtrrdi x y x + y
35 19 34 oprssdm × dom +
36 18 35 eqssi dom + = ×
37 df-fn + Fn × Fun + dom + = ×
38 15 36 37 mpbir2an + Fn ×
39 34 rgen2 x y x + y
40 ffnov + : × + Fn × x y x + y
41 38 39 40 mpbir2an + : ×